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ABSTRACT 
We can create Virtual Reality (VR) interactions that have no equiv-
alent in the real world by remapping spacetime or altering users’ 
body representation, such as stretching the user’s virtual arm for 
manipulation of distant objects or scaling up the user’s avatar to 
enable rapid locomotion. Prior research has leveraged such ap-
proaches, what we call beyond-real techniques, to make interac-
tions in VR more practical, efcient, ergonomic, and accessible. We 
present a survey categorizing prior movement-based VR interac-
tion literature as reality-based, illusory, or beyond-real interactions. 
We survey relevant conferences (CHI, IEEE VR, VRST, UIST, and 
DIS) while focusing on selection, manipulation, locomotion, and 
navigation in VR. For beyond-real interactions, we describe the 
transformations that have been used by prior works to create novel 
remappings. We discuss open research questions through the lens 
of the human sensorimotor control system and highlight challenges 
that need to be addressed for efective utilization of beyond-real in-
teractions in future VR applications, including plausibility, control, 
long-term adaptation, and individual diferences. 
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• Human-centered computing → Virtual reality; Interaction 
design theory, concepts and paradigms. 
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Figure 1: Movement-based VR interactions showcased on a 
continuum from high to low degree of verity (meaning true 
to life): reality-based, illusory, and beyond-real interactions, 
with sensory mismatch created through body-centered (ego-
centric) or world-centered (allocentric) warping. 

1 INTRODUCTION 
The idea of leveraging VR beyond the replication of reality dates 
back to the early days of this technology. In a 1965 article, “The 
Ultimate Display,” Ivan Sutherland proposed that “there is no rea-
son why the objects displayed by a computer have to follow the 
ordinary rules of physical reality” and that “such a display could 
literally be the Wonderland into which Alice walked” [171]. Over 
the years, other researchers have shared a similar perspective about 
VR interaction design and have highlighted potential benefts of 
designing VR interactions beyond reality, including improving hu-
man performance [109] and making interactions more efcient, 
ergonomic, and accessible [72]. For example, the Go-Go interaction 
is an arm-extension technique that stretches the user’s arm during 
reach, enabling them to grasp and manipulate distant objects [122]. 
These interactions are designed not to overcome the limitations of 
VR technology, but to overcome the limitations of our reality. 

In “Beyond Being There” (1992), Hollan and Stornetta made a 
parallel argument in response to telecommunication and computer 
supported collaborative work research and development at the time. 
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They argued that when comparing telecommunication to face-to-
face communication “the imitation will never be as good as the 
real thing. This is true by defnition if one is strict in using the old 
medium as the standard of measurement. . . requiring one medium to 
imitate the other inevitably pits strengths of the old medium against 
weaknesses of the new” [69]. They presented a framework around 
needs, media, and mechanisms, “to ask the question: what’s wrong 
with (physically proximate) reality?” and explore new mechanisms 
that leverage the strengths of the new medium to meet our needs. 

Towards similar goals, we believe there is a need to more sys-
tematically investigate what we call beyond-real VR interactions: 
movement-based interactions that are not possible in the real world. 
By “real world” we do not imply that there exists an objective physi-
cal world independent of the user’s subjective mental world. Instead 
we are referring to what others have called the “actual world”: what 
can be experienced by the human sensory system without the use 
of technology [87]. VR enables full-body interactions with digital 
content where users can move and act in the virtual world. These 
interactions do not have to resemble users’ movements in the real 
world, as VR presents an opportunity to construct imaginative inter-
actions by remapping users’ movements and altering the resulting 
sensory feedback. Due to the plasticity of the human sensorimotor 
system, users have the ability to learn and perform motor tasks un-
der new remappings [117]. As HCI practitioners, we are interested 
in exploring VR interactions that are usable and lead to such motor 
skill acquisition given novel dynamics. Thus, we propose describing 
VR interactions through the lens of the sensorimotor system, as 
transformations applied to tracking and sensing inputs from the 
real world. We believe such perspective highlights considerations 
around action and perception that are key for understanding the 
potential, as well as challenges, of beyond-real interactions. 

In this paper, we present a framework based on sensorimotor 
control for categorizing virtual reality interactions as reality-based, 
illusory, or beyond-real, as shown in Figure 1. We further utilize 
this framing for describing beyond-real interactions as a set of 
transformations applied to real-world input. We apply the frame-
work to a survey of VR interactions and systematically identify and 
categorize beyond-real interactions based on their underlying trans-
formations. This survey provides an overview of more than 30 years 
of beyond-real interaction techniques and identifes key types of 
transformations that have been explored. Finally, we use the lens of 
sensorimotor control to map out open research questions central to 
better understanding the efective use of beyond-real interactions. 

In this work, we contribute: 

• Beyond being real, a framework based on the human sensori-
motor control to describe movement-based VR interactions 
as transformations applied to input from the real world. 

• A literature survey to categorize existing VR interactions (at 
CHI, IEEE VR, VRST, UIST, and DIS conferences) as reality-
based, illusory, or beyond-real, apply the framework to iso-
late beyond-real transformations in these selected works, and 
describe transformation categories that have been explored 
by prior research for creating beyond-real interactions. 

• A discussion of challenges and open research questions that 
require further investigation of beyond-real VR interaction 
design through the lens of sensory integration. 

2 BACKGROUND 
In VR users can move in virtual spaces and perform full-body in-
teractions. We focus on these movement-based VR interactions 
[56] and action execution in VR (p. 40) [114]. We approach inter-
action from a control and optimal behavior perspective [70], and 
study interaction techniques, such as selection, manipulation, and 
locomotion, that require motor performance [22]. 

In this section, we frst present our categorization of VR inter-
actions as either reality-based, illusory, or beyond-real. We then 
provide a high-level background on the human sensorimotor sys-
tem and control theory. Through this lens, we describe how VR 
interactions can be thought of as transformations that directly map 
or remap the user’s movements in the real world to renderings in 
the virtual world. This insight is central to our work and we believe 
to research that follows. Here, we use this framing to diferentiate 
between reality-based, illusory, and beyond-real interactions based 
on whether the transformation applies a remapping and whether 
that remapping is noticeable by users. 

We begin by situating these three categories within the context 
of prior research. Thurman and Mattoon [176] describe diferent 
dimensions of VR, including what they call the verity, meaning true 
to life, dimension. They then use verity to denote “a continuum of 
simulation experiences that range from recreations of the physical 
world as we know it to depictions of abstract ideas which have 
no physical counterparts.” Along this continuum, VR interactions 
range from interactions with high degree of verity that follow 
natural laws of the real world to interactions with low degree of 
verity that follow novel, original laws. Similarly, Slater and Usoh 
discuss interactions on a spectrum from the mundane to the magical 
[155] which map closely to the verity continuum. 

Our three categories of movement-based VR interactions range 
from high to low degree of verity: (1) reality-based interactions that 
match the user’s real-world movements, (2) illusory interactions 
that create remappings between the user’s movements and the 
virtual renderings that remain unnoticed by users, and (3) beyond-
real interactions that create novel remappings between the user’s 
movements and the renderings in the virtual world (see Figure 1). 

2.1 Reality-Based Interactions 
Highly realistic VR environments that seek to replicate our real-
world experiences are used for practical applications, such as train-
ing [68], exposure therapy for treating phobias [119, 131], and 
post-traumatic stress disorders [70, 132]. These environments also 
facilitate user interactions that closely resemble interactions in the 
real world. Jacob et al. proposed the notion of Reality-Based Inter-
actions (RBI) to describe such interactions that employ themes of 
reality and leverage users’ pre-existing knowledge of the everyday, 
in VR and more broadly [72]. They highlight the benefts of RBI, 
including accelerated learning, reduced mental efort, facilitated im-
provisation, and improved performance, particularly in situations 
involving information overload, time pressure, or stress. They also 
note that despite the advantages of RBI, designers may explicitly 
give up realism to gain desired qualities by allowing users to per-
form many tasks within an application (expressive power) or across 
diferent applications (versatility) and to do so rapidly (efciency), 
without fatigue or risk of physical injury (ergonomics), and using a 
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varied range of abilities (accessibility). In this work, we focus on 
VR interactions in which designers explicitly give up realism by 
creating novel remappings between user inputs and the rendered 
outputs in VR to overcome the limitations of our experiences in 
the real world. However, it should be noted that there are many 
advantages associated with reality-based interactions, and extend-
ing interactions beyond reality is not always benefcial, nor is it 
suitable for all VR applications. 

2.2 Illusory Interactions 
As Lanier highlights, our most important canvas in VR is the user’s 
sensorimotor loop [84]. This technology ofers a unique opportu-
nity for manipulating senses, as arbitrary mappings can be created 
between the user’s movements and the rendering of their virtual 
body. Movement-based VR illusions are remappings that result in 
a subtle mismatch between the sensory feedback from the virtual 
system and the sensory feedback from the real world; however, 
the discrepancy is below the user’s perceptual thresholds and is 
resolved such that the sensory feedback aligns with what the user 
expects (i.e., the predictions of their internal model). For example, 
slightly extending the length of the user’s arm (Figure 1b) or slightly 
misplacing the user’s hand (Figure 1c) in VR are illusions that will 
go unnoticed by users. Gonzalez-Franco and Lanier present a model 
of illusions in VR that describes these processes in more detail [59]. 

Illusions have been explored by researchers to redirect the user’s 
hand while tracing surfaces [1, 81, 212] or reaching in midair 
[11, 30, 57] to provide an improved perceived haptic sensation and 
overcome the current limitations of VR technology. In these visuo-
haptic illusions the mismatch between the visual and proprioceptive 
feedback is resolved by visual dominance [64]. Another example 
of movement-based VR illusions is redirected walking where the 
rotational movement of the user’s head during turns is remapped 
to a diferent rotational angle in VR such that their perceived walk-
ing path is altered. When studying VR illusions, researchers are 
concerned with identifying users’ perceptual thresholds to ensure 
that the illusion remains unnoticed [1, 163]. While these illusory 
interactions are important for improving the perception of realistic 
(high degree of verity) VR environments, prior research has shown 
that our cognitive system can adjust to repeated exposure to con-
ficting stimuli [20]; thus, there are opportunities for exploration of 
overt forms of such remapping techniques that go beyond reality. 

2.3 Beyond-Real Interactions 
For decades, scholars have emphasized the need for further explo-
ration of virtual experiences beyond replication of reality. In 2003, 
Schneiderman highlighted that there are many opportunities for 
enhancing 3D interfaces “if designers go beyond the goal of mim-
icking 3D reality” [144]. In 2005, Casati et al. argued that eforts 
should be directed towards “creation of virtual perceptual objects 
that have no equivalent in the hard reality” [27]. Gaggioli suggested, 
in Human Computer Confuence, that “the possible uses of VR range 
from the simulation of plausible possible worlds and possible selves 
to the simulation of realities that break the laws of nature and even 
of logic” and that VR can provide “a subjective window of presence 
into unactualized but possible worlds” [54]. Bailenson, in Experi-
ence on Demand, proposed that the reality bending properties of 

VR allow us to create experiences “unbound by the law of the real 
world, to do impossible things in virtual settings” and that “VR is 
perfect for things you couldn’t do in the real world” [12]. 

From an interaction design perspective, while beyond-real VR 
interactions can ofer benefts, such as making movement-based in-
put more efcient [109] and ergonomic [72], they create noticeable 
incongruencies between the sensory feedback from the real world 
and the virtual environment. This sensory mismatch has impor-
tant implications for designing usable beyond-real interactions that 
people can learn, adapt to, and feel in control of. Therefore, in our 
work, we carefully consider the human sensorimotor system and ap-
proach interaction from a control and optimal behavior perspective 
[70]. Under this assumption, the human is a goal-directed control 
system that receives feedback about the state of the world through 
virtual renderings and behaves so as to change the control signal 
towards a desired output. The human pursues this goal optimally 
and adapts to the constraints of the virtual environment. In the next 
section, we present a simplifed model of the human sensorimotor 
system and optimal control theory that we believe is key in the 
discussion of beyond-real interactions. We use this theoretical lens 
throughout the paper to describe beyond-real VR interactions as 
transformations applied to real-world input. We conduct a survey 
of beyond-real transformations that have been utilized by prior 
research and highlight open research questions that remain in the 
design and evaluation of usable beyond-real VR interactions. 

2.4 Sensorimotor System and Control Theory 
Human performance may be modelled at various levels of behav-
ior: skill-based, rule-based, and knowledge-based behaviors [124]. 
Optimal Feedback Control (OFC) theory focuses on skill-based be-
havior (e.g., catching a ball) and has been used to predict how the 
human brain plans and controls movement [140] by studying the 
link between high-level goals and real-time sensorimotor control 
strategies [178]. This theory suggests that the Central Nervous Sys-
tem (CNS) acts as a feedback controller, continuously converting 
sensory input into motor output [182] and it does so optimally, 
based on a performance metric, such as obtaining minimal uncer-
tainty in the state estimate [183]. Researchers have also proposed 
using a Mini-Max Feedback Control (MMFC) model, an extension 
of the OFC model that minimizes energy consumption under the 
assumption of worst-case uncertainty [182]. 

2.4.1 Overview. Figure 2 shows how the CNS interacts with the 
body and the VR system during movement-based interactions. In 
this diagram blocks represent key components, and arrows denote 
the fow of control signals, clockwise from the top left. The opti-
mal controller outputs motor commands based on the discrepancy 
between the desired and estimated states [200]. These motor com-
mands lead to movements in the real world that are then subject to 
body dynamics and the efects of the environment, such as exter-
nal forces. The VR system includes sensing and tracking devices 
that capture the user’s movements. Movement-based VR interac-
tions can be thought of as transformations applied to these signals 
captured from the real world. In reality-based interactions the trans-
formations create a 1:1 mapping to the VR renderings; in illusory 
interactions the transformations create subtle remappings that are 
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Figure 2: Flow of control signals in movement-based interactions through the central nervous system, body, and VR system. 

unnoticed by users; and in beyond-real interactions the transfor-
mations create novel remappings. The human sensory apparatus 
receives sensory feedback from both the real world and the virtual 
system (shown in orange). The state estimator receives the sensory 
feedback through the sensory apparatus as well as an eference 
copy of the original motor signal [18]. While noise is present at all 
stages [183], we only show discrete examples in this diagram. 

2.4.2 Central nervous system. Figure 3 shows the subcomponents 
of the CNS and the fow of control signals. The feedback controller 
outputs motor commands based on the discrepancy between the 
desired and estimated states, which is then combined with the 
output of an adaptive inverse model [200]. An eferent copy of motor 
signals is sent to a forward model that predicts the result of motor 
commands [18]. The forward and inverse models are collectively 
referred to as the internal model and capture information about the 
context and the properties of the sensorimotor system. 

2.4.3 Sensory integration. Multisensory integration is a complex 
process that modifes the original signal based on low-level sen-
sory information, top-down infuences of the internal model, and a 
range of cognitive factors; therefore, it is perhaps more accurately 
described as multisensory interaction [172]. This interaction is task-
dependent and may be afected by the modality of the stimulus as 
well as the information content of the feedback [157]. Multisen-
sory processing is also infuenced by attention [172] and human 
emotional responses to stimuli [139]. Finally, the central nervous 
system minimizes uncertainty by refning sensory signals based on 
prior knowledge and memory [182]. 

Figure 3: Control signals in the central nervous system. 

Redundancy in the sensorimotor system ensures robustness [46] 
such that elimination of a feedback has minor efects on motor 
behavior [40]; however, perturbations of the same signal may sig-
nifcantly alter movement [35]. For example, while reaching without 
sight results in minor errors, visual distortions have been shown 
to lead to drastic compensatory movements [134, 137]. Therefore, 
sensory integration predominantly addresses unexpected changes 
based on prediction errors [172]. Note that OFC theory is concerned 
with errors that are referred to as slips, and not mistakes that arise 
from incorrect intentions (p. 414) [115]. 

2.4.4 Learning and adaptation. Prediction errors drive simulta-
neous perceptual and motor learning [46, 117]. While both the 
forward and inverse models are adapted [200], it has been shown 
that prediction learning precedes the learning of new control poli-
cies [46]. Beyond adaptation to perturbations, humans can learn 
to synthesize movement under entirely novel dynamics [61]. An 
example of sensorimotor learning is prism adaptation in which an 
individual performs perceptual motor tasks while wearing goggles 
that shift their visual feld [128]. An interesting characteristic is that 
the efects of adaptation after removing the goggles, known as af-
terefects, are not global, and only result in a systematic movement 
bias for the specifc, practiced task [6]. 

We use this theoretical background to frst present a descriptive 
framework for beyond-real interactions and then discuss open re-
search questions and challenges that remain in the context of sen-
sory integration and adaptation. 

3 THE BEYOND BEING REAL FRAMEWORK 
We present beyond being real, a framework using a sensorimotor 
control perspective for investigating movement-based VR interac-
tions that have no equivalent in the real world. The framework, 
shown in Figure 4, provides a scafolding for describing beyond-real 
interactions in three stages, by describing the sensing and track-
ing data in the real world, the set of transformations applied to 
the real-world input for creating novel remappings in VR, and the 
VR renderings that provide signifers and feedback to improve the 
usability of beyond-real interactions. In this section, to highlight 
this descriptive power, we return to the example of the Go-Go 
interaction technique [122]. Note that while we provide a high-
level description of the Go-Go interaction here, the framework is 
better suited to describing a specifc implementation of the inter-
action technique that includes more details. For a more in-depth 
walk-through example, please refer to Appendix B. 
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Figure 4: The VR system receives input from the real world, applies beyond-real transformations, and renders the remapping. 

3.1 Real-World Sensing and Tracking 
The virtual system has limited information about the state of the 
real world. For example, in most commercial VR systems the po-
sition of the headset is known; however, the system often does 
not have direct knowledge of the user’s body pose. The real-world 
information often describes the environment state (e.g., room di-
mensions, obstacles), users’ physical state (e.g., head position, hand 
pose), and their cognitive state (e.g., attention, workload). In the 
frst stage of the framework, we identify what sensing and tracking 
devices are available, what limitations they have (e.g., range, rate, 
accuracy), and what real-world data from those devices is being 
utilized by the virtual system. In the Go-Go interaction technique, 
the inputs from the real world are the user’s physical arm length 
(d) and the user’s real hand position (H®r ) in the user’s egocentric 
frame of reference. In this case, the origin is the user’s chest po-
sition, approximately determined based on the position of the VR 
headset. 

3.2 Beyond-Real Transformations 
The input passed on to the virtual system is then either disregarded, 
mapped directly, or remapped. Remappings can be fxed throughout 
the interaction or may dynamically change based on users’ actions 
captured by the input data [85]. These mappings can be described 
as transformations that take input from the real world and modify 
the space, the user’s body representation, or time parameters. 

In the second stage of the framework, we focus on the goal of the 
beyond-real interaction (i.e., interaction task). To describe the sets 
of transformations applied to the real-world data, we identify what 
parameters are modifed as a result of the remappings (space, body, 
or time) and what the mapping type is (direct, fxed, or dynamic). 
In the Go-Go interaction, the beyond-real transformation is a dy-
namic remapping that modifes the user’s body representation for 
manipulation of distant objects. More specifcally, the user’s virtual 
hand (H®v ) is extended during the last 1/3 of their reach range, for a 
given coefcient k (0 < k < 1): � 2H®r if ∥H®r ∥ < 3d 

H®v = 
H®r + k(∥H®r ∥ − 3

2d)2 otherwise 

While our framework focuses on VR interactions, such transfor-
mations are not unique to VR and may be used to describe remap-
pings between movement-based user inputs and outputs of com-
puting systems more broadly. For example, by modifying the con-
trol/display ratio, the movements of the mouse can be remapped to 
the movements of the cursor. However, for beyond-real VR interac-
tions specifying these transformations can be especially useful for 

determining the sensory mismatches that users experience as a re-
sult of the remapping, which we discuss in more detail in section 5. 

3.3 VR Renderings and Remapping Signifers 
The virtual system renders information through output devices, 
such as the VR headset and headphones. While some renderings 
are mapped to the input (i.e., they directly result from user ac-
tions), others are independent of the real-world input and the ap-
plied transformations. Independent renderings may communicate 
to users what mappings exist, prior to the execution of actions. 
These signifers may be egocentric (e.g., visible features of the body 
representation) or exocentric (e.g., features in the environment or 
specialized objects). The concept of “User Representation” defned 
by Seinfeld et al. [142] is closely related to egocentric signifers. 
More specifcally, User Representations are virtual elements that 
extend users’ physical bodies and they “may have signifers that 
communicate the actions they support.” 

In the third stage of the framework, we identify the aspects of 
the renderings that are independent of the real world and commu-
nicate the remapping to users (invisible, egocentric, or exocentric 
signifers). Remapping signifers have important implications for 
learnability and adaptation to novel remappings (see discussion in 
section 5). In the Go-Go interaction, there are no visible signifers 
that communicate the remapping to users independent of the user’s 
actions. Therefore, users can only discover the remapping after 
they extend their arm more than 2/3 of their arm length. 

In the following section, we present a survey of beyond-real 
interactions previously presented at HCI conferences. We apply this 
framework to those interactions to isolate and group the beyond-
real transformations that have been explored by prior works. 

4 SURVEY OF BEYOND-REAL INTERACTIONS 
We conducted a systematic review of literature, following PRISMA 
guidelines [102], to (1) understand past research trends with respect 
to reality-based, illusory, and beyond-real movement-based VR 
interactions, (2) evaluate to what extent VR interaction research 
has explored beyond-real transformations, and (3) explore whether 
or not researchers have considered the human sensorimotor loop 
in their exploration of beyond-real interactions. 

In this survey, we focused on action execution and more specif-
cally, on motor performance (p. 40) [114]. 3D interaction techniques 
have been categorized into selection, manipulation, wayfnding, 
locomotion, system control, and symbolic input [22]. We were par-
ticularly interested in selection, manipulation, and locomotion, as 
they require users to act on the world. We chose to exclude symbolic 
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input and system control through which users change the mode 
or state of the system, as they do not have a counterpart in our 
physical reality and fall outside the scope of our work. 

Navigation is conceptualized as having two components: 
wayfnding refers to the cognitive component of navigation and 
locomotion describes the movement from one place to another [107]. 
Due to its cognitive nature, wayfnding cannot be fully captured 
through the lens of sensorimotor control. While we use the term 
“navigation” as part of our search query to capture all locomotion 
papers, we do not focus on works that only address wayfnding. 

4.1 Method 
4.1.1 Phase 1: Identification. We searched the ACM Digital Library 
for full papers targeting the following venues: the ACM Confer-
ence on Human Factors in Computing Systems (CHI), the ACM 
Symposium on Virtual Reality Software and Technology (VRST), 
the ACM Symposium on User Interface Software and Technology 
(UIST), and the ACM Conference on Designing Interactive Systems 
(DIS). Additionally, we searched IEEE Xplore targeting the IEEE 
Conference on Virtual Reality and 3D User Interfaces (IEEE VR). We 
focused our search on VR interaction techniques, allowing terms 
for common interaction techniques focused on action (selection, 
manipulation, locomotion, navigation) to appear in either the title 
or abstract. As we sought to understand trends of research attention 
to reality-based, illusory, and beyond-real interactions over time, 
papers placed in our identifcation phase date back to 1988. Note 
that we did not use keywords in our search query. An example of 
the way our queries were structured: 

Title:((interaction* OR select* OR manipulat* OR 
locomot* OR navigat*) AND (virtual OR VR)) OR 
Abstract:(((interaction* OR select* OR manipulat* OR 
locomot* OR navigat*) AND (virtual OR VR)) 

This phase found a total of 1268 full papers for further screening. 

4.1.2 Phase 2: Screening. We excluded papers that were not focused 
on virtual reality (326). This excluded augmented reality and other 
non-immersive platforms such as tabletop displays. Furthermore, 
we excluded papers that were not focused on interaction techniques 
(271). We defned interaction techniques as means by which the user 
engages with the virtual content through movement - as opposed 
to novel infrastructure, rendering techniques, collision detection 
algorithms, visualizations, descriptions of input devices or haptic 
devices. Screening reduced our set to 671 papers. 

Figure 5: Flow of information through the diferent phases 
of our systematic review, following PRISMA guidelines. 

4.1.3 Phase 3: Eligibility. We excluded papers that were analyses 
or experimental evaluations of existing interaction techniques (283), 
applications of interaction techniques to real-world problems (127), 
surveys of interaction techniques (8), and revisions of the same 
interaction techniques produced by the same authors (5). This step 
built our fnal study set of 248 papers. 

4.1.4 Phase 4: Dataset and coding. We coded each included paper 
along four dimensions: (1) type of interaction: reality-based, illusory, 
or beyond-real, and if beyond-real (2) interaction task: selection, 
manipulation, locomotion, or wayfnding, (3) remapping parameter: 
space, time, or body, and (4) consideration of sensorimotor loop: 
yes/no. Often papers developed techniques that leveraged multiple 
transformations and could be applied to multiple interaction tasks. 
We applied multiple labels in these cases. Note that while we have 
coded for all interaction tasks that appeared in our dataset, we 
focus on interactions that require skilled motor actions and not 
higher-level cognition (e.g., wayfnding) in the results. 

4.2 High-Level Survey Findings 
4.2.1 Interaction types. Of the interaction techniques we analyzed, 
we found: 103 reality-based (42%), 48 illusory (19%), and 97 beyond-
real (39%), as shown in Figure 6. While the frequencies of beyond-
real and reality-based interaction papers remained relatively consis-
tent over time, we saw a jump in the number of illusory interactions 
after 2016; 12 illusory interactions were presented before (in 20 
years, 1996-2016) and 36 after (in 4 years, 2017-2021). For a full list 
of illusory interaction papers, please refer to Appendix A. 

Figure 6: Bar chart partitioning VR interaction papers into 
reality-based, illusory, and beyond-real categories. 

4.2.2 Interaction tasks. Of the 97 beyond-real interaction tasks, we 
found: 51 selection (39%), 43 manipulation (33%) and 37 locomotion 
(28%), shown in Figure 7. These numbers do not sum to 97 because, 
as mentioned, some interaction techniques are multi-purpose. For 
example, beyond-real techniques that leverage miniature recon-
structions of virtual environments allow for both selection and 
manipulation of occluded objects [89]. 

4.3 Beyond-Real Transformations Explored 
Here we focused on the subset of papers in our survey that explore 
beyond-real interactions. We applied our framework (described in 
section 3) to these prior works in order to isolate the beyond-real 
transformations they utilize and organized these transformations 
into three groups (space, body, or time) based on their remapping 
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Figure 7: Bar chart partitioning beyond-real interaction pa-
pers based on the interaction task they focus on. 

parameter. Using a combination of inductive and deductive coding, 
we then identifed subcategories of transformations that we describe 
in this section. It should be noted that these transformations can be 
described in multiple ways. Additionally, a user may reason about 
these transformations diferently than how the transformations are 
implemented in practice. Therefore, the choice of transformation 
functions may depend on the specifcs of the design, context of the 
interaction, or the aim of the analysis. 

4.3.1 Space Transformations. Space transformations create remap-
pings of movement in 3D space. 

Translation: Prior work has explored space translation for locomo-
tion tasks in VR, specifcally to augment walking. Translational 
gain amplifes the shift of the virtual ground under the user’s feet 
to enable users to walk more rapidly in VR [125, 195]. 

Scaling: The scale of rendered content can be altered in VR to enable 
novel forms of interactions with virtual objects and the surrounding 
environment. For example, users can scale down the environment 
to obtain a high-level overview and more easily manipulate large 
virtual objects [204]. Scale-based remappings have also been lever-
aged for locomotion. For example, the virtual world can be scaled 
down with the center of scaling at the midpoint between the user’s 
eyes, allowing them to walk rapidly through a miniature world [2]. 

Figure 8: Examples of beyond-real interaction techniques in 
the literature survey (a: [4], b: [135], c: [204], d: [96]). 

Duplication: A fxed mapping can be created between the real-world 
space and multiple copies of the environment in VR. Poros is one 
such interaction technique that displays proxies of remote regions 
of the virtual environment [121]. The changes made to the miniature 
VR space propagate to the full-size virtual environment, enabling 
users to utilize the proxy to manipulate objects. Another technique, 
vMirror, uses strategically placed mirrors and their refections to 
allow users to manipulate obscured objects [89]. 

4.3.2 Body Transformations. Beyond-real interactions may alter 
users’ body representation, which has been defned in a variety 
of ways. Given our focus on action, in this paper, we refer to the 
categorization of bodily representation by Martel et al. [95] which 
includes body image, body structural description, and body schema. 
Body image relies heavily on visual input and refers to the con-
scious representation of the body’s shape and size. Body structural 
description is a conscious spatial map of the body parts and their 
relationships, informed primarily by somatosensory and visual sys-
tems. Body schema refers to the unconscious and highly plastic 
representation of the body parts, including posture, shape, and size. 
It should be noted that while some beyond-real interactions may 
be described in other ways, such as space transformations, they 
are perceived by users as transformations of body representation. 
Due to the plasticity of body representation in the human brain, 
this egocentric perspective is necessary to more accurately capture 
users’ expectations and actions. 

Alternate Morphologies: In VR, users can embody avatars with 
novel sizes, forms, and structures. For example, Ninja Hands maps 
the movement of a single hand to multiple hands to ease distant 
target selection [135]. Another paper iteratively adjusts the length, 
and therefore range of motion, of the avatar’s forearms and fngers 
to achieve better performance on specifc tasks [96]. Note that users 
may perceive space scaling transformations as body scaling and a 
form of alternate morphology. 

Movement Remapping: Movement of the user’s body in the real 
world can be altered virtually to represent another type of move-
ment. Shake-Your-Head maps lateral and vertical head movements 
to walking and jumping, thus enabling in-place locomotion [175]. 
Walking by Cycling maps real-world pedaling motions to the walk-
ing of a virtual avatar [50]. Movement remappings can also be used 
for object selection and manipulation. For example, users can move 
and rotate objects by grasping an imaginary handle bar skewering 
virtual objects [160]. One prominent form of movement remapping 
comes in the form of gaze-based interactions, which translates eye 
movement to hand input such as grabbing or shifting objects [206]. 

Tool Use: Increasingly, evidence is emerging that tool-use may af-
fect body image [95] and body schema [26]. This point is further 
discussed by Seinfeld et al. [142] through the concept of User Rep-
resentations. Therefore, in some cases it may be appropriate to 
describe tool-based interactions as a body representation transfor-
mation. For example, ray-casting is a popular tool-based selection 
technique in which a light ray extends from the user’s fnger and in-
tersects with various objects. Ray-casting can be enhanced to select 
the nearest target [15]. For multiple object selection, researchers 
have also developed techniques that map the position of users’ 
hands to virtual brushes and lassos [164]. 
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Table 1: Beyond-Real Interactions Categorized by Transformation Type 

Transformation Count References 

Space 44 

Translation 18 [3, 41–43, 73, 86, 91, 100, 108, 116, 125, 159, 185, 187, 191, 192, 195, 199] 
Scaling 27 [3, 9, 28, 33, 38, 41–43, 83, 86, 89, 91, 104–106, 120, 121, 159, 161, 170, 185–187, 191, 199, 204, 207] 
Duplication 18 [7, 32, 49, 89, 99, 103, 106, 112, 120, 121, 138, 167, 180, 188, 204, 204, 207, 209] 

Body 55 

Alternative Morphologies 8 [3, 44, 60, 96, 122, 135, 189, 204] 
Movement Remapping 29 [5, 14, 25, 39, 44, 48, 50, 52, 62, 63, 100, 145–147, 151, 158–160, 162, 173–175, 179, 205, 206, 208] 

[193, 204, 210] 
Tool Use 22 [8, 10, 15, 37, 53, 71, 76, 91–93, 97, 118, 123, 136, 158, 164, 168, 169, 181, 190, 203, 208] 

Time 4 

Time Travel 2 [148, 204] 
Speed Change 2 [74, 126] 

4.3.3 Time Transformations. Remappings can be created that alter 
the user’s perception of and interactions with time. 

Time Travel: In VR it is possible to allow the user to visit the future 
or retrace their temporal footsteps. One technique allows the user 
to revisit old checkpoints along a path for navigation [149]. The 
users’ timeline of engagements with the VR application is recorded 
and becomes another dimension along which they may travel. 

Speed Change: Users of virtual reality applications can develop 
skills with gentler learning curves with the help of time manipula-
tion - for instance, slower motion of a tennis ball so that beginner 
players can successfully return it [75]. The motion of avatars in 
VR can also be accelerated or decelerated to change the user’s 
perception of time [127]. 

4.4 Survey Results for Beyond-Real 
Interactions 

4.4.1 Transformation types. Of the 97 beyond-real transformation 
papers, we found: 44 space transformations (45%), 55 body transfor-
mations (57%), and 4 time transformations (4%). All of the beyond-
real interactions surveyed are shown in Table 1, where they are 
organized based on subcategories of transformations. Of space 
transformations, we found 27 are scaling (61%), 18 are translation 
(41%), and 18 are duplication (41%). Of body transformations, we 
found 22 involve tool use (40%), 29 are movement remapping (53%), 
and 8 are alternative morphologies (14%). Of time transformations, 
2 leveraged speed change and 2 used time travel. Multiple space 
and body transformations consisted of sub-transformations. For 
example, techniques that scale the user’s jumps scale the environ-
ment (shrink it to make the jump appear higher) as well as translate 
it (have the ground move faster while the user is in the air). 

4.4.2 Consideration of sensorimotor loop. We found that 23 of the 
97 beyond-real papers consider the efect of sensory confict (24%); 
only 4 of these were published before 2017. Usually discussions 
of the sensorimotor loop center around simulator sickness evalu-
ated on study participants with the standard Simulator Sickness 

Questionnaire (SSQ). Primarily SSQ scores are one of several met-
rics, such as frustration or movement instability, used to assess the 
efectiveness of a given interaction technique. We found limited 
examination of causal factors in favor of a more empirical treat-
ment. Deeper model-based analysis such as that enabled by control 
theory may position researchers to design interaction techniques 
that do not induce simulator sickness at the outset, as well as iterate 
more efciently upon recognition of factors responsible for sensory 
mismatch. The results of this survey additionally suggest a strong 
opportunity for the VR community to explore sensorimotor issues 
with interaction techniques beyond simulator sickness. 

5 OPEN RESEARCH QUESTIONS 

Figure 9: Users receive sensory information from both the 
real world and the VR system which are then integrated. Un-
derstanding sensory integration and how the user’s internal 
model is updated accordingly is integral for exploring open 
research questions around beyond-real VR interactions. 

Our survey identifed that over the years, a number of reality-
based and beyond-real interaction techniques have been devel-
oped and presented at research conferences. While a clear research 
agenda has been articulated for reality-based interactions (see [72]), 
as a research community, we are missing a road map for the de-
sign and development of beyond-real interactions. Our survey also 



Beyond Being Real CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

identifed that while there are many new beyond-real interaction 
techniques developed, only a small percentage of them consider 
sensorimotor control issues beyond motion sickness. Our proposed 
framework, beyond being real, allows for a uniform way to describe 
such interactions from this sensorimotor control perspective, but 
lacks any predictive ability. We believe a research agenda is needed 
to help bridge this gap towards better understanding and modeling 
of beyond-real interactions. Here we discuss some of the open re-
search questions for beyond-real interactions from this perspective. 

5.1 Control and Usability 
In the real world, once learned, we perform skilled motor actions 
automatically and without conscious awareness of how they are 
executed [114, 124]. Initially, beyond-real remappings are unfa-
miliar, as they have no counterpart in our physical reality, and 
the forward model cannot predict the outcome of motor actions. 
These unexpected prediction errors shift the user’s attention in the 
virtual environment [6, 172] and lead to breakdowns that require 
conscious refection during interaction, as described by the Hei-
deggerian notion of presentness-at-hand [65, 196]. Motor learning 
can be described as an experience-driven, systematic update to the 
internal model that enables users to predict the outcome of motor 
commands and develop new control policies [46] (see Figure 3). 
For beyond-real interaction designs to be usable [113], users need 
to learn to synthesize movement under the new dynamics [61]. 
Meaningful feedback plays a key role in these adaptations, as has 
been shown for body transformations in VR [36]. However, the best 
methods for supporting these adaptations are not known. 

5.1.1 Drawing from Prior Experiences. The time it takes for users 
to learn beyond-real remappings depends on their familiarity with 
the motor task [61]. To address this lack of familiarity, designers 
have leveraged users’ prior experiences by using themes from sci-
ence fction literature, or more broadly books, movies, and other 
narratives [109]. Another approach is to design interactions that 
indirectly utilize skills users have already developed in the real 
world. For example, eye gaze as a mechanism for selecting distant 
objects leverages a skill we have developed as a result of making 
eye-contact with others during conversation [72]. 

5.1.2 Learning Timescales. Repeated interactions are needed for 
users to learn new control policies over time. For example, in a 
study where the range of motion of the participants’ arms and legs 
were swapped, it took around 10 minutes for participants to learn 
the remapping and to utilize the range of motion of their avatar’s 
body parts [201]. Motor learning is driven by diferent processes 
at multiple timescales and it often involves quick approximations, 
followed by slow adjustments that enable fne tuning [67]. Beyond-
real interactions change how we perceive the afordances of objects 
and properties of the world around us. For example, body scaling 
infuences users’ perception of size and distance [16, 82, 184]. This 
movement context is captured by the internal model, and compared 
to the state updates, it changes at a much slower time-scale [200]. 
Moreover, “motor learning undergoes a period of consolidation, 
during which time the motor memory is fragile to being disrupted”; 
therefore, dynamic remappings that may interfere with one another 
should not be presented in quick succession. 

5.1.3 Exploration. The uncertainty associated with outcomes of 
motor action directly relates to exploratory behavior [182]. When 
users suspect that their knowledge of the environment could be 
improved, they make exploratory choices to increase their learn-
ing rate [40]. While the specifcs of these learning processes in the 
brain is not fully understood [88], prior research has proposed difer-
ent strategies for encouraging exploration. For example, providing 
lower quality visual feedback may increase uncertainty, promote 
exploratory risk-taking, and lead to more accurate internal models 
under the new dynamics [67]. This approach is at odds with the 
sentiment of efective feedback in interaction design, and more 
research is needed to unpack this interplay. 

Due to these gaps in our understanding, more predictive models 
are needed to determine the boundaries of usable beyond-real VR 
interactions and how far we can push those boundaries [201]. More 
specifcally, new methods are needed for evaluating the usability 
of a beyond-real interaction design and predicting how much time 
is necessary for users to learn the remapping. 

5.2 Long-Term Use and Afterefects 
It has been shown that our cognitive system can adjust to repeated 
exposure to conficting stimuli [20, 35]. This adaptation, which 
is driven primarily by the forward model [18], has been studied 
both in the context of illusions and interactions beyond reality. The 
VR user experience begins when users choose to engage with the 
virtual content and put on their headset and continues as users 
exit VR [80]. Therefore, adaptation afterefects that may carry over 
into the real world need to be carefully considered. Afterefects 
are often task-dependent [6] and may also depend on the speed of 
the movement [35]. These adaptations also afect other aspects of 
how we perceive space [82]. However, not all adaptations lead to 
afterefects, and this may depend on the modality of the sensory 
feedback. For example, in a between-subjects study where users 
experienced either visual or proprioceptive distortions (created by 
vibration), the efects of proprioceptive adaptations disappeared 
afterwards [17]. Many research questions remain unanswered in 
the context of long-term use of beyond-real interactions. Can we 
train users, through extended practice, to perform efectively under 
novel remappings? How will the dynamics of the interaction change 
after the novelty of the beyond-real experience diminishes? Will 
users maintain their ability to perform under similar remappings 
the next time they return to the virtual experience? 

5.3 Individual Diferences 
Individual diferences play a signifcant role in how users perceive 
and act in virtual environments [58]. These diferences also infu-
ence sensory integration and the thresholds at which users become 
aware of novel remappings. As a result, the categorization of in-
teractions as either illusory or beyond-real is user-dependent. For 
example, a user that notices a reach redirection illusion [11] will 
perceive this interaction as a beyond-real space transformation. In 
the context of beyond-real VR interactions, various factors may 
contribute to these individual diferences, including users’ age [66], 
physique [23], prior experiences [165, 194], familiarity with science 
fction [109], or gaming frequency [197]. 
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5.3.1 Physiological Responses. Beyond-real interactions are sus-
ceptible to negative physiological responses, as users often receive 
incongruent sensory feedback from the real world and the vir-
tual system. For example, some users report symptoms of motion 
sickness when there is a mismatch in sensory feedback from the 
vestibular and visual systems. Individuals may have diferent phys-
iological responses to a virtual experience. With regards to fying, 
researchers have found that “a lot of people fnd it an endless source 
of fun, but other people report tired arms and motion sickness” [24]. 
The user’s physiological response is an important consideration 
from both safety and usability standpoints [12, 47]. 

5.3.2 Emotional Responses. VR has been recognized as a powerful, 
immersive media that can evoke strong emotions in users [12]. In 
particular, experiences beyond reality may lead to profound emo-
tional responses, both positive [54, 165], often involving the feeling 
of awe [31, 77], and negative, such as the feelings of fear [21], dis-
tress [141, 166], and regret [51]. It has been shown that incongruent 
sensory stimuli result in negative emotions [139]. Conversely, emo-
tional responses infuence multisensory processing in ways that 
can be refected in action [85]. For example, expectations of high 
reward release dopamine in the brain, such that it may no longer 
operate as an optimal controller [40]. 

At a high-level, individual diferences infuence sensorimotor con-
trol and consequently, how users respond to beyond-real VR inter-
actions. However, many open research questions remain regarding 
how individual diferences should be accounted for in the design of 
such interactions. How can we capture individual diferences from 
real-world input data? How might we better model user behavior 
based on individual user’s interactions with the system over time? 
Can we ofer adaptive, personalized experiences that account for 
individual diferences? How might we then evaluate beyond-real 
interaction designs at a large scale? 

5.4 Presence and Plausibility 
Presence, or place illusion, has been defned as the psychological 
experience of being there: “the extent to which an individual expe-
riences the virtual setting as the one in which they are consciously 
present” [156]. Designers, often guided by implicit or explicit the-
ories, seek presence in the hopes of improving other attributes 
of the virtual experience, including learning or task performance 
[19]. However, researchers have found inconsistent results when 
studying the correlation between the sense of presence and such 
attributes [154, 156], which perhaps is expected, as these are infu-
enced by many factors, including users’ abilities and prior expe-
riences. Due to individual diferences, in practice, it may be chal-
lenging to evaluate the efects of beyond-real interactions on users’ 
subjective sense of presence. Witmer and Singer [197] have pro-
posed a collection of factors hypothesized to contribute to pres-
ence, including control, sensory, distraction, and realism factors. It 
should be noted that the realism factor does not require content 
that replicates reality, but relates to continuities, connectedness, 
and coherence of the virtual experience. 

Plausibility illusion, the illusion that what is occurring is actually 
happening [152], is another psychological dimension that has been 
attributed to realistic responses to virtual environments. Plausibility 

illusion also does not require physical realism and is related to 
causal relationships between the user’s actions and the resulting 
sensations. While in this paper we do not discuss presence and 
plausibility directly, human sensorimotor control naturally lends 
itself to discussions around these contributing factors. 

5.5 Accessibility 
Beyond-real interactions must also be considered from the perspec-
tive of accessibility. Mott et al. [110] discuss the potential in VR 
for increased “interaction accessibility” and equity for all people, 
including people with disabilities, given that in VR people can have 
abilities no person can experience in the real world, what they call 
“superpowers” (e.g., fying). Sadeghian and Hassenzahl extend this 
concept of superpowers into a VR interaction design methodol-
ogy [133]. While assistive technology in the physical world has 
many limitations in terms of its ability to adapt, VR and specif-
cally beyond-real interactions might support more adaptive and 
ability-based interactions [198]. However, researchers have also 
warned about the potential to amplify diferences in ability [110] 
and that the inherent body-centric perspective of VR poses sub-
stantial issues for people with physical disabilities. Gerlig and Spiel 
[55] highlight the importance of considering minority bodies while 
designing VR interactions and more importantly including people 
with disabilities in the design of new interaction paradigms. Addi-
tionally, while some VR accessibility research, including the papers 
we surveyed, focus on manipulating visual feedback (e.g., [101]), 
there are opportunities for exploration of beyond-real interactions 
through other sensory feedback, which would increase accessibility 
for blind and visually impaired VR users, who primarily access VR 
through audio [34, 143] or haptics [150, 211]. 

5.6 Ethical Implications 
Slater et al. present a detailed discussion of the ethics of realism in 
virtual reality, and many of the discussion points are highly rele-
vant to beyond-real experiences [153]. Throughout the paper, we 
have also alluded to some ethical implications of beyond-real VR 
interactions, such as motion sickness; however, it is necessary to 
explicitly acknowledge the importance of ethical considerations 
from a sensorimotor control perspective. Beyond-real remappings 
may result in motor behavior changes during the interaction. For 
example, when embodying an avatar with a fexible tail-like ap-
pendage, users changed the way they moved their hips [202]. When 
walking around a virtual environment as a giant, users took bigger 
steps in the real world [2]. “Presence in VR leads to absence in 
the physical world” [12]; therefore, not accounting for behavior 
changes, especially with regards to users’ movements in the real 
world, could have serious consequences. Moreover, long-term use of 
beyond-real VR interactions may have afterefects that alter motor 
behavior in the real world [17]. For example, in a study where users’ 
virtual eye position was ofset from the position of their real eyes, 
it was shown that, after removing the VR headset, participants’ 
hand-eye coordination was altered, as evidenced by their inability 
to accurately point to a target [20]. Such sensorimotor adaptations 
pose safety concerns that need to be carefully considered. 
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6 LIMITATIONS 
In the following section, we will acknowledge some of the limi-
tations of our work and highlight opportunities for future work 
related to the study of beyond-real virtual reality interactions. 

6.1 Completeness 
The human sensorimotor system is incredibly complex and many 
details are not captured by the simplifed model presented here. 
For example, multisensory integration happens at multiple stages, 
utilizing both bottom-up and top-down processes [172], and the 
sensory signals involve considerable delays that are largely missing 
in our model [200]. 

Moreover, our goal for conducting a survey was to apply the 
framework to selected work exploring beyond-real VR interactions. 
One limitation is our choice of query; a broader query may be 
needed for an exhaustive categorization. For example, some VR 
interaction papers, such as [90], did not appear in our search be-
cause neither “VR” nor “virtual” was mentioned in the title or the 
abstract of the paper. Future work may also consider analyzing 
other venues, such as the journal of Virtual Reality, and including 
VR interactions that were not in the scope of our work, such as 
system control and symbolic input [22]. 

6.2 Embodiment 
Previous research has studied the sense of embodiment, which has 
been defned as having three components: the sense of self-location, 
the sense of agency, and the sense of body ownership [78]. Our work 
lacks a coverage of this extensive body of research and how beyond-
real interactions may infuence users’ sense of embodiment in VR. 
For example, it has been shown that in arm-extension techniques 
the sense of body ownership declines as the length of the virtual 
arm increases [79]. The efects of beyond-real transformations on 
body ownership have mainly been studied in isolation, and our 
understanding of how diferent transformations might interact 
with each other in more complex scenarios is limited. Consider 
the beyond-real interaction technique Ninja Hands [135], where 
the movement of the user’s hand is mapped to multiple virtual 
hands in space. In Ninja Hands, these virtual hands are visually 
disconnected from the user’s body (see Figure 8b). While prior 
research has shown that virtual limbs that are visually connected 
to the user’s body increase the user’s sense of body ownership (as 
measured through their physiological responses) [177], it remains 
unclear if many connected limbs, as in Ninja Hands, would have 
a similar efect. Users’ sense of body ownership, which is subject 
to individual diferences [94], may have implications for learning 
and adaptation of beyond-real interactions. Further research is 
needed to unravel the efects of beyond-real transformations on 
embodiment, including body ownership, agency, and self-location. 

6.3 Focus on Action 
While we focus on VR experiences that require users to act on 
the world, applications that do not focus on action could also be 
benefcial. For example, beyond-real experiences can be utilized 
for demonstration in educational applications, as they provide a 
unique opportunity for learning abstract concepts [24]. They can 
facilitate transformative experiences that evoke strong emotions 

and elicit new insights [54]. Beyond-real experiences can ignite 
one’s imagination and foster creativity [84] and encourage positive 
behavior changes that may even transfer to the real world [12]. 

6.4 Social Interactions 
In our framework, we have taken an ego-centric approach, focusing 
on a single user’s interactions; however, VR is well suited for social-
ization and collaboration. When describing how reality is refected 
in the word virtual reality, Lanier highlights that “VR functioned as 
the interstices or connection between people; a role that had been 
previously taken only by the physical world . . .A reality results 
when a mind has faith that other minds share enough of the same 
world to establish communication and empathy” (p. 240) [84]. 

Bailenson et al. describe techniques beyond reality that change 
the nature of social interaction in collaborative virtual environ-
ments, including manipulation of self representation, sensory ca-
pabilities, and the temporal/spatial context [13]. They argue that 
in VR, unlike face-to-face interaction, the user’s rendered behavior 
can deviate from their actual behavior. The system can leverage this 
characteristic to, for example, improve communication by altering 
the user’s rendered behavior such that it mimics the nonverbal 
behavior of others, referred to as the Chameleon Efect [29]. While 
beyond-real social interactions have been explored [129, 130], many 
research questions remain. For example, how might users with dra-
matically diferent scales interact [204]? How does that infuence 
their perception of interpersonal distance? 

6.5 Other Sensory Modalities 
Our work mainly addresses users’ visual and somatosensory sys-
tems. However, the current state of VR technology enables render-
ing of audio, and perhaps in the future commercial VR headsets 
may be able to engage our other sensory input channels, such as 
olfactory [111]. Virtual experiences beyond reality are not limited 
to vision and touch, and can span other sensory modalities. For ex-
ample, in VR, we may gain the ability to smell the scent associated 
with others, in ways that we could know when someone familiar 
enters a room without seeing them, or whether that person has 
previously been in the same room. 

6.6 Mixed Reality Spectrum 
Finally, while we have specifcally focused on virtual reality, beyond-
real interactions may be integrated into other experiences on the 
mixed reality spectrum [98]. For example, the Go-Go arm-extension 
technique has been applied in augmented reality to enable inter-
actions with distant objects in the real world [45]. While similar 
transformations may be used to describe such interactions, further 
study of the implications and considerations is needed. 

7 CONCLUSION 
In this paper, we frst described a simplifed model of the control 
signal fow during movement-based interactions and situated VR 
interactions within this model. We explained how intent is con-
verted to motor commands in the central nervous system resulting 
in movements in the real world. These movements are tracked by 
the VR system and transformed into virtual renderings. Users re-
ceive sensory feedback from both the real world and the virtual 
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system. In most cases, the brain operates as an optimal controller 
and with the use of the state estimator, responds accordingly to 
perform the intended actions in VR. Using this simplifed model, we 
partitioned the space of VR interactions into reality-based, illusory, 
and beyond-real based on the magnitude of the resulting sensory 
confict. We then presented beyond being real, a framework for de-
scribing beyond-real interactions as a set of transformations applied 
to real-world input. We conducted a survey of prior HCI literature 
(at CHI, IEEE VR, VRST, UIST, and DIS conferences) with a focus 
on selection, manipulation, locomotion, and navigation in VR. We 
applied our framework to extract and categorize the beyond-real 
transformations in these works and highlighted a gap: research that 
carefully considers the consequences of sensory confict resulting 
from beyond-real transformations. Lastly, we discussed challenges 
and opportunities for future research towards the goal of better 
understanding and evaluating interactions beyond reality. 
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