Supplementary Material

A Model Predictive Control Approach for Reach Redirection in Virtual Reality

E.J. Gonzalez, E.D.Z. Chase, P. Kotipalli, S. Follmer

Contents

1	Model Validation Data	1
2	Statistical Contrasts	3

1 Model Validation Data

The development and evaluation of a Minimum Jerk-based redirection model is presented in Section 3 of our paper. Here we provide a more thorough visual comparison of the model simulation results against experimental data. We present the mean hand trajectories for all 5 horizontal redirection levels in the validation dataset (0, 4, 8, 12, 16 cm), averaged across all participants.

0 cm Redirection: Average Real & Simulated Hand Trajectories

Figure 1: (Left) Mean real and simulated reach paths for 0 cm redirection trials, averaged across all participants and overlaid over data from all experimental and simulation trials. (Middle) Mean and standard deviations for real and simulated hand position trajectories. (Right) Mean and standard deviations for real and simulated hand velocity profiles.

4 cm Redirection: Average Real & Simulated Hand Trajectories

Figure 2: (Left) Mean real and simulated reach paths for 4 cm redirection trials, averaged across all participants and overlaid over data from all experimental and simulation trials. (Middle) Mean and standard deviations for real and simulated hand position trajectories. (Right) Mean and standard deviations for real and simulated hand velocity profiles.

8 cm Redirection: Average Real & Simulated Hand Trajectories

Figure 3: (Left) Mean real and simulated reach paths for 8 cm redirection trials, averaged across all participants and overlaid over data from all experimental and simulation trials. (Middle) Mean and standard deviations for real and simulated hand position trajectories. (Right) Mean and standard deviations for real and simulated hand velocity profiles.

12 cm Redirection: Average Real & Simulated Hand Trajectories

Figure 4: (Left) Mean real and simulated reach paths for 12 cm redirection trials, averaged across all participants and overlaid over data from all experimental and simulation trials. (Middle) Mean and standard deviations for real and simulated hand position trajectories. (Right) Mean and standard deviations for real and simulated hand velocity profiles.

16 cm Redirection: Average Real & Simulated Hand Trajectories

Figure 5: (Left) Mean real and simulated reach paths for 16 cm redirection trials, averaged across all participants and overlaid over data from all experimental and simulation trials. (Middle) Mean and standard deviations for real and simulated hand position trajectories. (Right) Mean and standard deviations for real and simulated hand velocity profiles.

2 Statistical Contrasts

In this section, we provide the tabulated results of all statistical contrasts completed during the analysis of our study results (Section 7 of our paper), including: endpoint error, reach time, root-mean-squared path error (RMSE), dimensionless-squared jerk (DSJ) of hand trajectory, noticeablity of warping (perception of real and virtual hand movements matching), and tolerability of warping.

Study	Level	$d\!f$	t	<i>p</i>
Endpoint	0 - 4	241	1.89	0.359
Endpoint	0 - 8	241	2.33	0.125
Endpoint	0 - 16	241	-0.52	1.000
Endpoint	4 - 8	241	0.44	1.000
Endpoint	4 - 16	241	-2.42	0.099
Endpoint	4 - 16	241	-2.85	0.028
Path	$MPC-P_{0.1} - MPC-P_{0.05}$	365	1.94	0.161
Path	$MPC-P_{0.1} - TPS$	365	3.41	0.002
Path	$MPC-P_{0.05}$ - TPS	365	1.48	0.424
Path	0 - 0.2	365	-0.93	1.000
Path	0 - 0.4	365	-2.08	0.229
Path	0 - 0.6	365	-5.83	<.0001
Path	0.2 - 0.4	365	-1.15	1.000
Path	0.2 - 0.6	365	-4.90	<.0001
Path	0.4 - 0.6	365	-3.75	0.001

 Table 1: Endpoint Error Contrasts

 Table 2: Reach Time Contrasts

Study	Level	$d\!f$	t	p
Endpoint	0 - 4	244	1.90	0.349
Endpoint	0 - 8	244	0.96	1.000
Endpoint	0 - 16	244	-1.04	1.000
Endpoint	4 - 8	244	-0.95	1.000
Endpoint	4 - 16	244	-2.94	0.022
Endpoint	4 - 16	244	-1.99	0.284
Path	MPC-P _{0.1} - MPC-P _{0.05}	365	-3.48	0.002
Path	$MPC-P_{0.1} - TPS$	365	3.34	0.003
Path	$MPC-P_{0.05}$ - TPS	365	6.83	<.0001
Path	0 - 0.2	365	-1.12	1.000
Path	0 - 0.4	365	-2.15	0.195
Path	0 - 0.6	365	-4.89	<.0001
Path	0.2 - 0.4	365	-1.03	1.000
Path	0.2 - 0.6	365	-3.77	0.001
Path	0.4 - 0.6	365	-2.74	0.039

Table 3: RMSE Contrasts						
Study	Level	$d\!f$	t	p		
Path	MPC-P _{0.1} - MPC-P _{0.05}	365	0.00	1.000		
Path	$MPC-P_{0.1} - TPS$	365	2.95	0.010		
Path	$MPC-P_{0.05}$ - TPS	365	2.95	0.010		
Path	0 - 0.2	365	-1.03	1.000		
Path	0 - 0.4	365	-1.77	0.467		
Path	0 - 0.6	365	-2.78	0.034		
Path	0.2 - 0.4	365	-0.75	1.000		
Path	0.2 - 0.6	365	-1.76	0.476		
Path	0.4 - 0.6	365	-1.01	1.000		

Table 4: DSJ Contrasts					
Study	Level	$d\!f$	t	p	
Endpoint	0° : MPC-E - HR	239	1.32	0.190	
Endpoint	4°: MPC-E - HR	239	1.28	0.202	
Endpoint	8°: MPC-E - HR	239	-2.55	0.012	
Endpoint	16°: MPC-E - HR	239	-0.79	0.433	
Path	MPC-P _{0.1} - MPC-P _{0.05}	364	-2.53	0.035	
Path	$MPC-P_{0.1} - TPS$	364	1.18	0.713	
Path	$MPC-P_{0.05}$ - TPS	364	3.71	0.001	
Path	0 - 0.2	364	0.87	1.000	
Path	0 - 0.4	364	0.55	1.000	
Path	0 - 0.6	364	-3.26	0.007	
Path	0.2 - 0.4	364	-0.32	1.000	
Path	0.2 - 0.6	364	-4.13	0.0003	
Path	0.4 - 0.6	364	-3.81	0.001	

Table 5: Trial Hand Match Contrasts

Study	Level	df	t	p
Endpoint	0 - 4	241	-1.82	0.421
Endpoint	0 - 8	241	-2.53	0.073
Endpoint	0 - 16	241	7.17	<.0001
Endpoint	4 - 8	241	-0.71	1.000
Endpoint	4 - 16	241	8.99	<.0001
Endpoint	4 - 16	241	9.70	<.0001
Path	0: MPC-P _{0.1} - MPC-P _{0.05}	365	3.36	0.003
Path	0: MPC-P _{0.1} - TPS	365	-2.52	0.036
Path	0: MPC-P _{0.05} - TPS	365	-5.88	<.0001
Path	0.2: MPC-P _{0.1} - MPC-P _{0.05}	365	3.92	0.0003
Path	$0.2: \text{ MPC-P}_{0.1} - \text{TPS}$	365	-3.36	0.003
Path	$0.2: \text{ MPC-P}_{0.05} - \text{TPS}$	365	-7.28	<.0001
Path	0.4: MPC-P _{0.1} - MPC-P _{0.05}	365	2.80	0.016
Path	0.4: MPC-P _{0.1} - TPS	365	-1.26	0.625
Path	$0.4: \text{ MPC-P}_{0.05} - \text{TPS}$	365	-4.06	0.0002
Path	0.6: MPC-P _{0.1} - MPC-P _{0.05}	365	2.10	0.109
Path	0.6: MPC-P _{0.1} - TPS	365	0.56	1.000
Path	0.6: MPC-P _{0.05} - TPS	365	-1.54	0.373

Table 6: Block Hand Match Contrasts

Study	Level	$d\!f$	t	p
Path	MPC-P _{0.1} - MPC-P _{0.05}	14	2.69	0.053
Path	$MPC-P_{0.1} - TPS$	14	0.00	1.000
Path	$\mathrm{MPC}\text{-}\mathrm{P}_{0.05}$ - TPS	14	-2.69	0.053

 Table 7: Block Tolerability Contrasts

Study	Level	$d\!f$	t	p
Path	MPC-P _{0.1} - MPC-P _{0.05}	14	1.68	0.345
Path	$MPC-P_{0.1} - TPS$	14	-1.68	0.345
Path	$MPC-P_{0.05} - TPS$	14	-3.36	0.014