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ABSTRACT 
Reach redirection is an illusion-based virtual reality (VR) interac-
tion technique where a user’s virtual hand is shifted during a reach 
in order to guide their real hand to a physical location. Prior works 
have not considered the underlying sensorimotor processes driving 
redirection. In this work, we propose adapting a sensorimotor model 
for goal-directed reach to obtain a model for visually-redirected 
reach, specifcally by incorporating redirection as a sensory bias 
in the state estimate used by a minimum jerk motion controller. 
We validate and then leverage this model to develop a Model Pre-
dictive Control (MPC) approach for reach redirection, enabling 
the real-time generation of spatial warping according to desired 
optimization criteria (e.g., redirection goals) and constraints (e.g., 
sensory thresholds). We illustrate this approach with two example 
criteria – redirection to a desired point and redirection along a de-
sired path – and compare our approach against existing techniques 
in a user evaluation. 
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1 INTRODUCTION 
Virtual Reality (VR) ofers users immersive experiences in environ-
ments that difer from the world around them. Beyond audiovisual 
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Figure 1: Overview of the proposed Model Predictive Con-
trol approach to reach redirection. As the user reaches to a 
target (top), the optimal virtual hand ofset is computed at 
each timestep based on the redirection objective. 

feedback, haptic feedback can further increase users’ sense of im-
mersion in VR [33]. However, accurately representing the physical 
properties and locations of virtual objects is challenging. Addition-
ally, users’ real-world environments often have constraints that 
further limit their ability to be mapped directly to a virtual scene. 
To address these issues, researchers have begun exploring ways of 
leveraging visual dominance [18] — or the tendency for vision to 
strongly infuence perception — to afect users’ perceived haptic 
and proprioceptive sensations in VR. 

Reach redirection is one such approach that aims to infuence 
the user’s hand trajectory as they reach for an object by smoothly 
ofsetting their virtual hand from their real hand [3, 30]. By loosen-
ing the requirement of 1-to-1 movement, researchers have shown 
how redirection can be used to convincingly repurpose physical 
props [3], generate sensations of weight [40], and infuence our 
perception of interactive devices [2, 20]. 

While there is much recent work studying the limitations and im-
pacts of redirection on user experience [5, 21, 52], the generation of 
novel redirection algorithms has been less explored. Some higher-
level strategies, such as blink-suppressed hand redirection [53], 
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broaden the capabilities of existing redirection techniques, but the 
low-level generation of real-to-virtual ofsets remains largely lim-
ited to linear interpolation between known points in space[3, 7, 37]. 

This predefned spatial interpolation strategy cannot easily adapt 
to changes in the user’s environment, uncertainty about the user’s 
intent, or individual diferences between users. Moreover, the psy-
chophysical impacts of redirection are not currently considered in 
the warping algorithm itself, except through ad hoc constraints. To 
enable redirection that directly considers the trade-ofs between 
users’ qualitative perception and the various goals of a redirected 
action, a more robust and generalizable framework is needed. Fur-
thermore, to capture how spatial warping more generally impacts 
user reaching movements, an improved sensorimotor control model 
of redirection is also needed. Presently, most applications treat redi-
rection as a "black box" applied to achieve a desired result (e.g., 
guide the user’s hand to a specifc point), without consideration 
for the underlying process. However, explicitly considering this 
process may ultimately lead to better algorithms than interpolation. 

Towards this goal, we propose a novel Model Predictive Control 
(MPC) approach for reach redirection in VR, illustrated in Figure 1. 
MPC is a general framework for the real-time control of a dynamic 
system which satisfes a given optimization objective [17]. The MPC 
framework enables the previously mentioned redirection trade-ofs 
to be intuitively incorporated as optimization costs. Moreover, MPC 
leverages a dynamic system model to plan optimal actions (in this 
case, spatial warping) over a horizon of potential future states. Since 
this process occurs continuously, spatial warping could adapt to 
changes within the user’s environment, such as the introduction of 
an obstacle that should be avoided. 

We frst present a practical dynamic model for redirected reach-
ing in VR. Based on well-established sensorimotor control research 
[43], we model the user’s hand motion as a minimum jerk (MJ) 
controller [16, 26] and incorporate redirection as a sensory bias 
in the user’s estimate of their hand state. This model allows us to 
simulate a user’s hand trajectory given any redirection algorithm 
and their reach target/time. 

Leveraging this model, we then describe our proposed MPC 
approach for controlling redirection. We explore two diferent cost 
functions to illustrate the versatility of this approach, specifcally 
enabling redirection to a desired endpoint and along a desired 
path. Both cost functions also encouraging the resulting warp to 
be smooth and minimal. By tuning the parameters within each 
cost function, it is possible to adjust the relative weight between 
task achievement (e.g., guide the hand to a precise point) and user 
comfort (e.g., limit rapid changes in applied warp). Finally, we 
evaluate our MPC approach against standard redirection methods 
in a target acquisition study. 

1.1 Contributions 
• Adapting sensorimotor control theory to model visually-
guided redirected reaching in VR 

• A novel MPC approach for reach redirection including sys-
tem model, parameters, sample cost functions, and imple-
mentation example 

• An evaluation comparing MPC-based reach redirection against 
traditional redirection methods 

2 RELATED WORK 

2.1 Hand Redirection in VR 
Hand redirection techniques leverage visual dominance [18] to 
adjust the trajectory of the user’s hand [30]. Typically this is done 
by smoothly ofsetting the position of the virtual hand from the 
measured hand position [32]. Azmandian et al. introduce two such 
warping methods – body warping and world warping – in their 
broader Haptic Retargeting technique [3]. Other techniques include 
Thin Plate Spline warping [31] and functional optimization of 3D 
space [55]. In each case, however, the warping used is fully defned 
by the target layout and typically does not update during the reach. 

Hand redirection has been used in a wide array of applications, 
including changing the perceived shape [30, 55] and location [3, 7] 
of passive haptic props. Researchers have also shown how redirec-
tion can be useful for improving the ergonomic layout of targets 
[14, 37], inducing weight perception [40], and improving the per-
ceived performance and capabilities of haptic devices [2, 20, 54]. 

Researchers have identifed the detection thresholds of hand 
redirection in a variety of scenarios [5, 13, 21, 52]. Other important 
factors, such as impact on comfort [7] and task performance [22, 
32], have also been explored. Such insights are invaluable to the 
development of new redirection techniques and applications which 
must balance their goal (e.g. remapping a set of targets) while 
maintaining user agency, immersion, and comfort. In our work, we 
propose an MPC framework as a way to incorporate such perceptual 
considerations directly into the generation of spatial warping. 

Recently, Lebrun et al. proposed a trajectory model for desktop-
scale hand redirection based on Bézier curves [35]. While their 
model captures fnal trajectory shape, in this work we propose a 
dynamic model which captures trajectory formation over time. 

2.2 Models of Goal-Directed Movement 
Flash & Hogan [16] proposed and experimentally-validated one of 
the earliest mathematical models of human arm movement – the 
minimum jerk (MJ) model. This model suggests humans minimize 
the jerk (rate of change of acceleration) of their hand’s movement 
during reaching. Hof & Arbib [25] formulated the MJ model as 
a feedback control law which can account for mid-reach target 
perturbations; follow up work further considers the change in reach 
time induced by target perturbation [25]. Saunders & Knill [43] 
extended Hof & Arbib’s feedback control model to include the 
efect of minor visual perturbations of the hand while reaching. 
While this approach does not account for trajectory uncertainty or 
individual diferences in strategy between users, the MJ feedback 
law has a closed-form, analytical solution making it convenient for 
real-time simulation. 

Other models have explicitly considered limb dynamics during 
movement generation [28]. Uno et al. [48] found that minimizing 
the overall change in joint torque during reach reproduced exper-
imental trajectories not captured by the MJ model. Such biome-
chanical models better capture the subtleties of human movement 
including joint limits, but introduce signifcant nonlinearities and 
thus increase computational cost. 

More generally, the human sensorimotor system has been shown 
to be well-modeled using stochastic optimal control methods ac-
counting for motor and sensory noise [49]. Harris and Wolpert 
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[23] found that open-loop minimization of endpoint variance pro-
duced plausible reach trajectories when multiplicative motor noise 
was accounted for. Todorov [47] generalized this into a closed-loop 
stochastic optimal control model that also incorporates sensory 
feedback. Alternatively, Bye & Nielson [6] presented the BUMP 
model for motor response planning, which incorporates variable 
horizon predictive control and accounts for both linear [45] and 
logarithmic [15] speed-accuracy tradeofs [51]. These models accu-
rately reproduce a broad range of movements, but require signif-
cant computation to generate trajectory estimates, making them 
difcult to integrate into real-time systems. 

Recently, HCI researchers have applied control theoretic models 
to reaching in the context of pointing [38]. Do et al. [9] recently 
presented a thorough simulation of point-and-click behavior with a 
mouse based on intermittent optimal control leveraging the BUMP 
model [6], replicating the trajectory variance and task completion 
time of real users. Such an approach is promising for the ofine 
simulation of redirection, but is challenging to incorporate within 
a real-time optimization process. Bachynskyi et al. [4] provide two 
models for the dynamics of 3D point-to-point hand movements. 
These models replicate user data well, but do not consider sensory 
feedback and their parameters must be ft to each user. 

Importantly, recent work presented a preliminary analysis com-
paring redirected velocity profles to those expected by a naive 
(non-feedback) MJ model [19]. Their results suggest that incorpo-
rating sensory feedback is needed for more accurate redirection 
modeling. Building on previous work in sensorimotor control, in 
this work we model redirection as sensory bias within an MJ feed-
back controller. 

2.3 Real-time Optimization in HCI 
Prior work in HCI has explored real-time optimization as a tool to 
enhance interactive systems. Inverse optimal control techniques 
have been used to infer users’ intended targets during mouse point-
ing [56] and reaching [36]. Nescher et al. apply an MPC framework 
for planning redirected walking in virtual reality [39]; however, 
their approach operates at a higher planning level – selecting be-
tween predefned strategies – and does not consider the sensorimo-
tor loop. Other work has considered using MPC to provide better 
haptic guidance [41]. Langerak et al. [34] leverage model predic-
tive contouring control to enable real-time electromagnetic haptic 
guidance for drawing. We take inspiration from their approach in 
this work, where instead we utilize a model of redirected reach 
and consider the warping applied to the virtual hand as an abstract 
form of guidance. 

3 A MODEL OF REDIRECTED REACH 

3.1 Overview 
Our initial goal is to model the trajectory of the user’s real hand in 
space given a visual target and an applied redirection algorithm. We 
begin by considering a simplifed version of the user’s sensorimotor 
control process, illustrated in Figure 2. An internal motion controller 
generates a control signal u which drives the user’s movement 
dynamics and updates their true hand state x. This true state is 
then processed through the sensory system to yield an estimated 
state bx. Critically, it is this estimated state which the internal motion 

 

Figure 2: Overview of the sensorimotor control process, 
where u is the motor command, x is the hand state, y is the 
sensory measurement, and x̂ is the estimated hand state. 

controller uses to generate the control signal. Diferences between 
the estimated and true state will therefore impact the generated 
movement of the hand. 

Various models for the user’s internal motion controller and 
movement dynamics during reaching have been explored, as de-
scribed in Section 2. By augmenting such an existing model with 
sensory feedback that captures redirection as a shift in the visually 
estimated hand state, we show that we can produce a practical 
model for redirected reaching. Note that in this approach we con-
sider visual feedback alone in the sensory estimation process, while 
in reality the sensory system integrates multiple channels (e.g., 
vision, proprioception, tactile) to estimate the various states of the 
body. Vision, however, has been shown to play a dominant role in 
reaching even during rapid movement [42–44], as demonstrated 
clearly by the success of previous redirection applications. 

In the remainder of this section we present the selected user reach 
model, detail the required adjustments to account for redirection, 
and present the results of our model simulation and validation. 

3.2 User Reach Model 
We build our redirected reach model by augmenting an existing 
model that captures how humans reach under normal conditions. 
We select the Minimum Jerk (MJ) model [16] for reach trajectory 
generation for its simplicity and generalizability. The MJ principle 
states that humans tend to minimize the derivative of accelera-
tion (jerk) when generating reaching movements. Hof & Arbib 
formulated this principle as a feedback control law [25], which we 
leverage as the basis for our redirected reach model. For simplic-
ity, we consider only a single movement dimension in our model 
derivation. We present the extension to 3D following our derivation. 

In this model, position and velocity are integrated from the 
hand’s acceleration, which is driven by a jerk signal u. Let the 
state variable x = [p v a T ]T be the position p, velocity v , and 
acceleration a of the user’s hand, along with the target position T , 
and let the internal control variable u be the commanded jerk. The 
discrete dynamics of the system with timestep δt are then: 

δt 

 
 

 
1 δt 0 0 0 
0 1 δt 0 0 

= Axk + Buk , (1)xk+1 xk + uk= 0 0 1 0 
0 0 0 1 0  
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0 
0 
0 
0 
1 
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Given the remaining reach time at timestep k , the MJ principle The dynamics for our augmented state zk are then given by: 

eA = B1 

e 

e 

can formulated as a feedback control law of the form [25]: 
Azk + Be1Kkbxk + eB2wkzk+1 =ih 60 −36 −9 −60 

of as a bias in the user’s estimate of their hand position. 

(9) 

(2)  

 δt 
 

 
 

 
1 δt 0 0 0 0 0 0 0= Kk xk = R3 R2 Rk R3 

k k k 
xkuk 

0 1 δt 0 0 0 0 0 0 
where Rk is the time remaining in the reach at timestep k . Note 0 0 1 0 0 0 0 0 

(8)that the gain matrix Kk varies as Rk changes. 0 0 0 1 0 0 0 0 0 
B̃2Hof & Arbib used this feedback model to explain the movements = =1 0 0 0 0 0 0 0 

, 0 
, 

 
 

 
 

caused by shifting the target position T mid-reach. In contrast, we 0 0 0 0 0 0 0 0 0 
aim to adapt this model to explain the hand movements induced 0 0 0 0 1 0 0 0 0 
during redirection by considering a shifting estimate of the user’s 0 0 0 0 0 1 0 0 0 0 
hand state. 

Combining with our estimation equations, we arrive at the com-
plete dynamic model for redirected reaching to a virtual target 3.3 Redirection as a Sensory Bias 
positioned at Tv :

Redirection algorithms work by computing and applying a desired 
ofset between the user’s physical and virtual hand: � e 

�� e 
� 
A + Be1KkC B1Kk D + Be2zk +1 zk + wk= 

v p = pk + wk (3)k 

vwhere p is the virtual position of the hand, p is the measured 
position of the physical hand, and w is the computed ofset at 
timestep k . 

For our model, we make the assumption that the state of the 
virtual hand (i.e., its position, velocity, acceleration) forms the user’s 
internal estimate of their hand state bx. That is, 

x = xvb 
� v v v = p v a Tv 

b 

The result is a linear, time-varying dynamic model for state z with 
command input w . The time-varying nature of the dynamics are 
driven by the internal MJ feedback matrix Kwhich varies with the 
estimated time remaining in the reach R. 

3.5 Extending to 3D Trajectory Formation 

Ak zk + Bbk wk= 

�T The preceding sections assumed movement in a single dimension (4) 
to simplify the derivation. Due to the independence of movement 
in each dimension suggested by the MJ principle[16], we can read-vwhere p , vv , and av , are the position, velocity, and acceleration of 

iily expand these results to three dimensions as follows, where zthe virtual hand, respectively, and Tv is the position of the virtual 
icontains the ith components of the augmented hand state and wtarget (i.e., the target which the user is reaching towards). From a 

bb 

state estimation perspective, Eq. 3 illustrates that w can be thought is the ith component of the redirection ofset. 

3.4 Modeling Redirected Trajectories 
Our claim is that the dynamics of a redirected reach can be modeled 
by considering this estimated state as the input to Hof & Arbib’s 
MJ feedback control law. That is, the dynamics of redirected reach 
can be expressed as: 

xk +1 = Axk + BKkbxk (5) 

In order to model how all of x̂ changes as a function of p and w , 
we consider an augmented state zk which consists of xk (the state 
of the user’s real hand) as well as two steps of position and control 
(w) history. 

 
 

0 0 0 0  
w 
w 
w 

3.6 Simulation & Comparison with 
Experimental Data 

We validate our model by simulating a set of reaches and comparing 
with experimental results. 

3.6.1 Dataset. We use the dataset of redirected reaches generated 
by Gonzalez et al. [19] for comparison, which contains a total of 
2400 reaches performed by 12 users in VR. Each user completed 
200 reaches to 5 targets (2 cm diameter circles) – 100 reaches were 

 
 

 
 

 
zx 
k+1 zx 

k 
xAx 

k Bx 
k kyb 

k 
y

A b 
k 
y

B
yzk+1 

yz0 0 0 b 
0 (10)+= k k b 

kA
z0 0 0 0zz 

k+1 zz 
k 

z 

 
 kBz 

k 

�T redirected to the targets, while the remaining 100 were performed 
Tk pk−1 wk−1 pk−2 wk−2 (6) normally. Position trajectories of users’ real and virtual hands were 

� 
zk = pk vk ak 

recorded for each trial. We compare our model against both redi-We then estimate the velocity and acceleration of the virtual rected and normal, non-redirected reaches. hand using backwards diference in order to relate vv and av to p 
and w , where δt is the discrete timestep: 3.6.2 Target Layout & Redirection Algorithm. Each reach began 

from a starting point 15 cm above and 40 cm in front of a central 
xv = Czk + Dwkk reference. The physical target was located either 0, 4, 8, 12, or 16  

 
 

 
1 0 0 0 0 0 0 0 1 cm to the left of the central reference. For redirected reaches, the 
1 −1 −10 0 0 1 

δ1t 
(7)0 0 visual target was always located at the central reference. Redirection δt1 

δt δt
−2 −2= , D =1 10 0 0 was performed via Haptic Retargeting as detailed by Cheng et al. δt 2 

0 
δt 2 δt 2 δt 2 δt 2 

0 0 0 0 
δt 2 

0 [7], where the ofset between the real and virtual hand is linearly 0 0 1 

C 
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Figure 3: Example comparison of real and simulated redi-
rected reach trajectories to a physical target that is ofset 4 
cm from the virtual target. The frst row of graphs shows 
a simulated trajectory initialized with the hand state at t = 
0. The second row shows a partial simulation of the same 
reach, initialized with the hand state at t = 0.5 × reach time. 

increased to the target value (0 - 16 cm) as the hand approaches the 
physical target. 

3.6.3 Simulation. We initialize our simulation with the starting 
position, velocity, and acceleration of the real hand and the position 
of the visually-presented target. The system is discretized with a 
timestep of 10 ms. At each timestep k , the remaining reach time is 
used to generate the appropriate Abk and Bbk matrices and propagate 
the state forward in time. In these initial simulations, we assume the 
reach end time (included in the dataset) is known. To investigate 
our model’s ability to simulate both full and partial reaches, we 
consider two initial simulation conditions per reach. In the Full 
condition, the simulation is initialized at the onset of the reach 
and the entire trajectory is simulated; in the Partial condition, the 
simulation is initialized at the temporal midpoint of the reach and 
the remaining half of the trajectory is simulated. 

3.6.4 Metrics. For each trial in the dataset, we compute the root-
mean square error (RMSE) between the simulated and experimental 
trajectory. To account for variation in reach time between trials, 
we resample each trajectory to 100 evenly spaced points between 
the simulation start and end time prior to computing RMSE. 

3.6.5 Results. Figures 3 & 4 show representative examples of fully 
and partially simulated redirected reaches. The average real and 
simulated trajectories for all ofsets are provided in Supplementary 
Material. Figure 5 presents the RMSE for fully and partially simu-
lated reaches to each target, both redirected and non-redirected. 

The simulation results suggest that our proposed model is ef-
fective at modeling the spatial trajectory of both redirected and 
non-redirected reaches. At a high level, the simulation produces 

Figure 4: Example comparison of real and simulated redi-
rected reach trajectories to a physical target that is ofset 12 
cm from the virtual target. The frst row of graphs shows 
a simulated trajectory initialized with the hand state at t = 
0. The second row shows a partial simulation of the same 
reach, initialized with the hand state at t = 0.5 × reach time. 

Figure 5: RMSE of fully (left) and partially (right) simulated 
trajectories for non-redirected and redirected reaches. 

behavior that matches real reaches – the physical hand is redirected 
to the correct target, yielding S-shaped position trajectories and 
bell-shaped velocity trajectories – given only the hand’s initial state 
and the end time of the reach. We use the reach end time given in 
the dataset (computed as the time the hand slows to a stop within 
2 cm of the target). 

For redirected reaches, we see an increase in the model error and 
its variance as the magnitude of redirection increases, indicating 
that there may still be features of redirected reaching not fully 
captured by our model. Importantly, however, we see that model 
accuracy tends to increase for partial reach simulation, where only 
the latter half of the reach is simulated. This is benefcial for appli-
cations which use models iteratively (such as MPC), as accuracy 
improves over time. 
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The increase in model error during redirected reaches may also 
arise from the task itself, in which users were repeatedly reaching 
under widely varying levels of redirection. Repeatedly changing 
users’ spatial mapping in this way could have led to the adoption 
of modifed reaching strategies which are captured less by the 
MJ model for goal-directed reach. Overall, however, the model 
generates plausible trajectories for redirected reaches. 

4 REDIRECTION AS A MODEL-PREDICTIVE 
CONTROL PROBLEM 

Up to this point, we have developed an approximate dynamic model 
for redirected reaching. While such a model is useful on its own for 
simulating reach under a given redirection algorithm, we are most 
interested in exploring how this dynamic model may be leveraged 
for the generation of novel redirection strategies. Specifcally, in 
what ways might the knowledge of how the user may respond to a 
change in spatial warping be useful for the real-time generation of 
the warping? Towards answering this question, we explore posing 
redirection as a Model Predictive Control (MPC) problem. 

4.1 Overview 
In contrast with previous redirection strategies, the MPC approach 
aims to determine an optimal physical-to-virtual warping in a real-
time, closed-loop fashion. Driving this process is the dynamic model 
of redirected reaching developed in Section 3. 

MPC operates by minimizing a cost function over a receding 
horizon in order to fnd a set of optimal system states and control 
inputs, leveraging a specifed dynamic model to inform the con-
troller how potential control inputs may infuence future system 
states. The optimal control input is then applied to the real system, 
and the process is repeated at each timestep. 

In the case of reach redirection, this optimization process should 
balance two main objectives: (1) guide the user’s hand to complete 
a desired redirection goal (e.g., arrive at a certain real-world target), 
and (2) ensure warping is applied smoothly and minimally. At a 
high level, this can be described by the following process, where z 
is the user’s state and w is the commanded input: Õ 

min Cдoal (z, w) + Cwarp (z, w) (11)z,w 

Here, Cдoal is the cost associated with straying from a given 
redirection goal and Cwarp is the cost associated with warping the 
user’s virtual hand from their real one. 

The redirection goal describes the objective of a given redirection 
task. In this work, we explore two possible redirection goals. We 
refer to the frst as endpoint-based redirection (such as Haptic 
Retargeting [3]), where the primary goal is for the user’s physical 
hand to arrive at a desired point in space. We refer to the second as 
path-based redirection, a novel redirection case where the goal is 
for the user’s physical hand to follow a desired path while reaching. 

4.2 System Model 
We leverage the dynamic model derived in Section 3 for our MPC 
formulation. Here, however, we redefne our state, control, and 
dynamics to be in the 3D form. We defne the system state used in 

our MPC formulation (z) as, � �T z = zx zy zz (12) 

where zx , zy , zz are defned according to Eq. 6 for the x , y, and z 
dimensions, respectively. This contains the position, velocity, and 
acceleration of the user’s real hand, as well as the position of their 
reach target (and two steps of position & control history). We defne 
the control variable w as the vector ofset added to the physical 
hand to generate the virtual hand position at a given timestep: � xw = w yw

�Tzw (13) 

We defne the system dynamics as: bzk+1 = Ak zk + bBk wk (14) 

where, without loss of generality, Abk and Bbk are redefned as the 
block diagonal A and B matrices in Eq. 10. 

4.3 Warping Costs 
We frst consider the costs associated with warping the user’s vir-
tual hand from their real hand. It is intuitive that the larger the 
ofset w is between the real and virtual hand, the less tolerable and 
more noticeable the redirection will be [7, 52]. To encourage the 
magnitude of the applied warping at any time to be minimal, we 
consider the following cost: 

Cw (w) = ∥w∥2 (15) 

which penalizes the magnitude of any applied ofset. Furthermore, 
to encourage warping to be applied smoothly [55], we also penalize 
the change in applied ofset from one timestep to the next: 

C∆w (z, w) = ∥wk − wk−1 ∥
2 (16) 

Additionally, we penalize the diference in velocity between the 
user’s real and virtual hand. This penalty explicitly encourages the 
motion of the virtual hand to follow that of the real hand. As an 
extreme example, we want our controller to discourage the virtual 
hand from moving in the opposite direction of the real hand, as this 
would likely be frustrating to the user and detract from their sense 
of agency and embodiment in the virtual environment [29]. 

2
Cv (z, w) = vv − v (17) 

Here v and vv are the velocity vectors of the real and virtual hands, 
respectively. While the real hand velocity is contained with the 
state z, the virtual hand velocity is computed according to Eq. 7. 

4.4 Redirection Goals 
It remains to formulate an appropriate cost function that captures 
the redirection goal. That is, what is the desired result of warping 
the user’s virtual hand? In the majority of prior work [3, 7, 19, 22], 
this goal is to bring the user’s hand to a particular point in space as 
they reach towards a specifc virtual object. We refer to this as an 
endpoint-based redirection goal. Applications of endpoint-based 
redirection range from enabling users to reach haptic props [7] to 
improving the ergonomics of a particular action [14, 37]. In this 
section, we formulate this goal as an optimization cost. 

However, to demonstrate the generalizability of an MPC ap-
proach to reach redirection, we also consider a second redirection 
goal which, to the best of our knowledge, has not been previously 
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Figure 6: Diagram of endpoint-based redirection 

explored. In addition to endpoint-based redirection, we explore a 
cost formulation to enable path-based redirection, where the goal is 
to guide the user’s hand along a particular path in space. If success-
ful, such an approach could be useful in a variety of scenarios, such 
as to obstacle avoidance within the user’s physical surroundings. 

4.4.1 Endpoint-based Redirection. The goal of endpoint-based redi-
rection is for the physical hand to arrive at a specifc physical point, 
T, when the virtual hand arrives at a specifc virtual point, Tv . 
Furthermore, at the point where redirection is initiated (po ), no 
warping should be present. This process is illustrated by Figure 6, 
where p is the position of the physical hand, and pv is the position 
of the virtual hand. 

The diagram demonstrates that we want to encourage the applied 
ofset w to approach wT = Tv − T as the physical hand approaches 
T. Similarly, w should be encouraged to be near zero when the 
physical hand is near the warp origin po . Let Do be the current 
distance from p to po , and let DT be the current distance from p to 
T. We can then formulate a cost which penalizes deviation from wT 
more heavily when DT is small, and similarly penalizes deviation 
from zero when Do is small. 

1 1 
Cr e (z, w) = 

(DT )
2 ∥w − wT ∥

2 + 
(Do )2 ∥w∥

2 (18) 

4.4.2 Path-based Redirection. For path-based redirection, the goal 
is to have the physical hand follow a desired path as the user is 
reaching towards a virtual object. Let rp be the desired path of 
the physical hand, parameterized by θ ∈ [0, 1] (shown in Figure 7). 
Here θ represents progress along the path; rp (0) indicates the path 
starting point, while rp (1) indicates the endpoint. Similarly, let rv 

be the straight-line path from the reach starting point to the virtual 
target, also parameterized by θ ∈ [0, 1]. We can think of this as the 
expected path of the virtual hand as the user reaches towards the 
target. 

Following a desired reach path requires minimizing the distance 
between the physical hand position p and the nearest point on rp 

at any given time. However, because fnding the nearest point on a 
curve is an optimization problem in itself, we fnd an approximate 
value for this point leveraging the progress term θ . We estimate 
the user’s current progress along the path as, 

θb = 
Do (19)

Do + DT 

Figure 7: Diagram of path-based redirection 

where Do is the distance from p to the reach starting point po , and 
DT is the distance from p to the desired reach path endpoint T . We 
therefore formulate the following cost to encourage the physical 
hand to follow rp . 

2 
Crp (z) = p − rp (θ̂ ) (20) 

Finally, in order to ensure the virtual hand arrives at the virtual 
target, we include an additional similar cost on the virtual hand’s 
deviation from rv . 

2 
Crv (z, w) = pv − rv (θ̂ ) (21) 

Importantly, because the MPC approach operates continuously 
in real-time, the desired path rp can be adjusted at each timestep. 
This enables redirection along a path that updates dynamically, for 
example, in response to changes in the user’s physical environment 
(such as another user entering the space) or shifting uncertainty 
in the user’s intended target. Furthermore, in order to simplify 
computation, rp can be a local ft to a global reference trajectory. 

4.5 Optimization 
Combining each warping cost, the total warping stage cost is, 

Jw = αwCw (wk ) + α∆wC∆w (zk , wk ) + αvCv (zk , wk ) (22)k 

where the weights αw , αδw , and αv ≥ 0 govern the relative infu-
ence of each cost term. For the endpoint-based redirection case, the 
redirection goal cost is 

J r = αr eCr e (zk , wk ) (23)k 

where αr e ≥ 0 governs the relative infuence of the endpoint redi-
rection goal. In the case of path-based redirection, the total redirec-
tion goal cost is, 

J r = αrpCrp (zk ) + αrvCrv (zk , wk ) (24)k 

where αrp and αrv ≥ 0 govern the relative infuence of the path 
redirection goal costs. We report the values of all weights used in 
our experiments in the following section. 

The total cost is computed by summing each stage cost over 
N future timesteps. At each time t , a sequence of optimal inputs 
w is computed by solving an N-step fnite horizon nonlinear op-
timization problem. Following each computation, the frst ofset 
in the optimal input sequence (w0) is applied to the real hand to 
determine the position of the virtual hand. The user then adjusts 
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the motion of their hand in response, updating the system state 
z. This process is iteratively repeated at each timestep, enabling 
modeling and approximation errors to be continually compensated. 

The fnal optimization problem (in both the endpoint-based and 
path-based redirection cases) is then 

NÕ 
min J r k + Jw 
z,w k 

k=1 

Subject to: bzk+1 = Ak zk + bBk wk (state dynamics) (25) 

z0 = z(t) 
zk ∈ Z 

(initial state) 
(state constraints) 

wk ∈ W (input constraints) 

At each time t , the optimization problem is initialized based on 
the current state of the hand, which we assume is known. This 
assumption is reasonable as spatial tracking of controllers (and 
accordingly hands) is common in VR systems. Note that Abk and Bbk 
can vary from one stage of the optimization problem to the next 
based on the estimated time remaining in the reach at timestep k – 
we describe our reach time approximation process in the follow-
ing Implementation Section. Larger horizons tend to yield better 
performance but at the cost of longer computation times; we have 
found N=10 to be a suitable balance between performance and com-
putation in our implementation. Constraints can also be used to 
build limits directly into the MPC redirection algorithm. For exam-
ple, state constraints can represent the physical limits of the user’s 
workspace, and input constraints can represent desired limits on 
the magnitude of applied ofsets. In the present work, we do not 
implement any constraints on the state or control inputs. 

5 IMPLEMENTATION 
In this section we describe our real-time implementation of MPC-
based reach redirection in VR. We implement two example con-
trollers - one for endpoint-based redirection (which we refer to 
as MPC-E) and one for path-based redirection (MPC-P). We detail 
our iterative approximation for remaining reach time, the selected 
optimization weights used in our evaluations, and the software 
implementation of the MPC controllers. 

5.1 Remaining Reach Time Approximation 
The redirected reach model used in the MPC strategy requires an es-
timate of the remaining time in the reach to inform the time-varying 
dynamics (Abk , Bbk ). Importantly, because the optimization problem 
is solved at each timestep, we require only an approximation for 
the time remaining in the reach. To generate this approximation 
at each timestep, we assume the hand’s velocity toward the reach 
target is constant. We frst smooth the velocity vector of the real 
hand using a 2nd order Savitzky-Golay flter and then project it 
in the direction of the target. The remaining reach time R is then 
approximated as, 

R = DT /∥vT ∥ (26) 
where DT is the hand’s distance to the physical target, and vT is 
the smoothed velocity vector projected in the direction of the target 
T . 

Figure 8: Remaining reach time is approximated as distance-
to-target divided by the hand’s speed in the target direction. 

5.2 Software & Hardware 
Our implementation is run in Unity 2017.3.1f1 on a laptop PC (Intel 
Core i7-7700 CPU @ 2.8 GHz). Optimization solvers for MPC-E 
and MPC-P were generated using ForcesPro [1], which creates C 
code for each solver. A C# wrapper allows the generated solvers 
to be used in Unity. Both solvers accept the optimization weights, 
physical target position, virtual target position, and reach origin as 
input parameters; additionally, MPC-P accepts the desired physical 
path as an input. The optimization weights used in our experiments 
are listed in Table 1 and were empirically selected by balancing user 
preference and MPC performance in pilot studies. Note that αv was 
not found to infuence MPC-E, and so was set to 0 for efciency. In 
contrast, this parameter had a signifcant efect on MPC-P, so we 
explore two potential weight values in this case: 

Table 1: Optimization Weights 

αr e αrp αrv αw α∆w αv 

MPC-E 1 - - 0.001 1 0 
MPC-P - 1 0.1 0.001 1 0.1/0.05 

Because the MPC must run in real-time, it is critical that the 
solver is fast and efcient. The mean solve time for an MPC-E 
problem instance is 2.5 ± 1.2 ms, while the mean solve time for 
MPC-P is 5.3 ± 1.0 ms. We found these values to be consistent across 
diferent users and reaches. Our algorithm runs in a Unity thread 
with a 10 ms loop time – no trials in our experiments led to solve 
times exceeding 10 ms. 

We use an HTC Vive Pro Eye head-mounted display (HMD) 
to render our VR environment. The HMD and two standard Vive 
controllers are tracked by two IR base stations. In the current imple-
mentation, users hold the controller in their hand to enable tracking 
of hand motion. 

6 EVALUATION 
We designed a two part VR target acquisition study to evaluate the 
efectiveness of MPC compared to existing redirection techniques. 
In the Endpoint Study, we compare our MPC-E against standard 
Haptic Retargeting (HR) as implemented by Cheng et al. [7], where 
users reach to a physical target that is ofset by a specifed angle. 
In the Path Study, we investigate desired reach paths of diferent 
curvatures; here we compare our MPC-P to the thin-plate spline 
warping (TPS) technique used by Kohli et al. in Redirected Touching 
[31]; TPS smoothly interpolates between pairs of fxed "landmarks" 
in physical and virtual space [11]. The impact of each of these 
methods were compared using quantitative reach characteristics as 
well as self-reported user experience. 
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6.1 Participants 
We recruited 10 right-handed participants to complete the study; 
however, 2 participants were removed due to data collection issues. 
Thus, we report on 8 participants (4 F, 4 M) between ages 19-28 (µ 
= 22, σ = 2.9). Participants received a $15 gift card for their time. 

6.2 Conditions 
6.2.1 Endpoint Study. This within-subjects study has two indepen-
dent variables: warp type (MPC-E vs. HR) and angle ofset. For each 
reach, the physical target is ofset from the virtual target by either 
0°, 4°, 8°, or 16°(Figure 9b). We selected these levels to be below (0°, 
4°), slightly above (8°), and signifcantly above (16°) the expected 
detection threshold of 4.5°as reported by Zenner et al. [52]. This 
results in a 2 × 4 study design. 

6.2.2 Path Study. This study compares MPC-P against TPS for redi-
recting the user’s hand along a desired path. We also investigate the 
impact of αv on the performance of MPC-P, as we hypothesize this 
weight balances the trade-of between path-following and detection 
of the warp. From pilot testing, we selected to compare αv values 
of 0.05 and 0.1. Therefore we investigate three warp types in Path 
Study (MPC-P0.05, MPC-P0.1, and TPS) and four ofsets for a 3 × 4 
within-subjects study design. 

In these trials, the physical target always coincides with the 
virtual target, while the curvature of the desired path is varied. 
Four paths are tested, with constant normalized curvatures of 0, 
0.2, 0.4, and 0.6 (Figure 9b). A normalized curvature of 0 indicates a 
straight line, while 1 would indicate a semicircle. In TPS trials, 30 
evenly-spaced points on the desired physical trajectory are used as 
physical landmarks, while 30 evenly-spaced points on the straight 
line between the origin and target are used as virtual landmarks. 

6.3 Measures 
For each trial, we quantify reach performance by the error from 
the reach endpoint to the physical target, total reach time, reach 
smoothness, and root mean squared error (RMSE) between the 
measured and desired trajectory (for curved path conditions only). 

We also solicit ratings about how noticeable the warping was for 
each reach. Additionally, for each warp type we record user ratings 
about overall noticeability, how tolerable the warping was, and the 
perceived task difculty. 

6.4 Procedure 
Before beginning the study, we explained the experimental pro-
tocol and received each participant’s consent to be in the study. 
Participants were seated and wore a VR headset (HTC Vive Pro 
Eye) while holding two HTC Vive VR controllers. In the virtual 
scene, a starting zone (orange sphere, 3 cm dia.) and reach target 
(2 cm dia.) were positioned in front of the participant. Following 
the setup of Zenner et al. [52], the starting zone was positioned 20 
cm below the user’s headset and 20 cm away from the body, while 
the target was positioned 40 cm out from the starting zone (Figure 
9a). A small red sphere (1 cm dia.) was displayed to represent the 
participant’s virtual hand. 

The overall study was organized into two sections, Endpoint 
Study and Path Study, counterbalanced between participants. Each 

Figure 9: (a) Experimental setup and virtual target layout for 
study. Participants wore a VR headset and reached the con-
troller from the orange starting zone to a red target. (b) Redi-
rection ofsets tested in Endpoint and Path Studies. 

section was divided into blocks (grouped by warp type) presented 
in randomized order. Endpoint Study had 2 blocks (MPC-E, HR), 
while Path Study had 3 blocks (MPC-P0.1, MPC-P0.05, TPS). Each 
block (i.e. warp type) consisted of 16 randomly presented reach 
trials (4 ofset levels × 4 repetitions). 

At the start of each trial, participants were asked to reach from 
the starting zone to the target as accurately as possible with their 
right hand. Note that no time limit or timing instruction was given. 
After each reach, participants were asked to respond to this state-
ment on a 5-point Likert scale: 

Q1. The movement of the red sphere matched my real hand. 
(0 = Strongly Disagree, 4 = Strongly Agree) 

Upon completion of a block (one complete warp type), partici-
pants were asked to rate their agreement (via 5-point Likert scale) 
with three additional statements about their overall experience: 

Q1. Overall, the movement of the red sphere matched my real hand. 
(0 = Strongly Disagree, 4 = Strongly Agree) 

Q2. To what extent were any diferences in the movement of the 
red sphere and your real hand tolerable. 
(0 = Very Intolerable, 4 = Very Tolerable) 

Q3. Rate the overall difculty of completing this block of tasks. 
(0 = Very Difcult, 4 = Very Easy) 

7 RESULTS 
Across 8 participants, 640 trials were recorded (Endpoint Study: 
256, Path Study: 384). In order to determine the efects of warp 
type and magnitude, we ft a linear mixed efects model to the 
data for each dependent measure. For per-trial measures (endpoint-
error, reach time, RMSE, smoothness, per-trial reported mismatch), 
warp type and ofset magnitude were set as fxed efects with an 
interaction efect between them. For per-block measures (overall 
reported mismatch, tolerability, and task difculty/ease), warp type 
was the only fxed efect. In all models, participant was included as 
a random efect. 

An ANOVA was used to determine the signifcant factors within 
each model. For signifcant parameters (p < 0.05), an additional 
Bonferroni-corrected post-hoc test was carried out in order to de-
termine pairwise signifcance – for space, these are reported via 

https://MPC-P0.05
https://MPC-P0.05
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Table 2: Endpoint Error Efects 

Study Factor d fN um d fDen F p ηp 
2 

Endpoint Warp 1 241 0.46 0.496 0.00 
Endpoint Ofset 3 241 3.90 0.009 0.05 
Endpoint W*O 3 241 2.23 0.085 0.03 
Path Warp 2 365 5.85 0.003 0.03 
Path Ofset 3 365 13.10 <.0001 0.10 
Path W*O 6 365 1.31 0.252 0.02 

Figure 10: Endpoint error across diferent ofset magnitudes 
and warping types. Means and 95% CI shown. 

signifcance markings on the fgures (*: p < 0.05, **: p < 0.01, ***: 
p < 0.001). The results are shown visually in Figures 10 - 17. Com-
plete statistical results for all pairwise contrasts are provided in 
Supplementary Material. 

7.1 Endpoint Error 
During each trial, the main goal was to reach the target as accu-
rately as possible; we assess this by computing the displacement 
magnitude between their hand’s fnal position and the target. In 
Endpoint Study, warp type did not signifcantly impact endpoint er-
ror (Figure 10); however there was a main efect of ofset magnitude 
(Table 2), with the diference arising between 8°and 16°. 

In Path Study (Figure 10), both warping type and ofset magni-
tude signifcantly afect the endpoint error (Table 2). The signifcant 
diferences in the warp type were between the MPC methods, with 
MPC-P0.1 resulting in higher endpoint errors. Additionally, end-
point error signifcantly increased with ofset magnitude. 

7.2 Reach Time 
We also examine the total time taken to complete each reach (Fig-
ure 11). In both studies, warping type and ofset magnitude were 
signifcant factors (Table 3). The signifcantly diferent pair in End-
point Study was between 4°and 16°of ofset. In Path Study, all three 
warp types difered signifcantly, with MPC-P0.05 having the longest 
reach times and TPS having the shortest. Increasing path curvature 
also signifcantly increased reach time. 

7.3 RMSE 
To see how well the diferent warp types encourage users to follow 
a particular curved trajectory (Path Study), we calculated the root 

Table 3: Reach Time Efects 

Study Factor d fNum d fDen F p ηp 
2 

Endpoint Warp 1 241 4.32 0.039 0.02 
Endpoint Ofset 3 241 3.18 0.025 0.04 
Endpoint W*O 3 241 0.76 0.515 0.01 
Path Warp 2 365 23.32 <.0001 0.11 
Path Ofset 3 365 8.76 <.0001 0.07 
Path W*O 6 365 1.05 0.085 0.02 

Figure 11: Reach time across diferent ofset magnitudes and 
warping types. Means and 95% CI shown. 

Table 4: RMSE Efects 

Study Factor d fN um d fDen F p η2 
p 

Path Warp 2 372 5.80 0.003 0.03 
Path Ofset 3 372 2.77 0.041 0.02 
Path W*O 6 372 2.37 0.227 0.02 

mean squared error (RMSE) between the measured and desired 
trajectory. There were signifcant efects of both warp type and 
ofset magnitude on RMSE (Table 4). Within warp type, TPS resulted 
in lower RMSE values compared to each of the MPC-P methods (0.1 
and 0.05). RMSE values tended to increase with ofset magnitude. 

7.4 Smoothness 
Beyond task performance, we were also interested in the smooth-
ness of the user’s reach. We compute the dimensionless squared 
jerk (DSJ) of each reach, which has been shown to properly charac-
terize smooth and jerky motions [27]. DSJ was calculated as follows, 
where D = t0 − tf is the reach duration and vmean is the mean 
reach velocity: �∫ tf � � �

2 xÝ(t)2 dt ∗ D3/v (27)mean 
to 

In Endpoint Study, there were no signifcant diferences between 
warp type or ofset magnitude, however a signifcant interaction 
efect was found (Table 5) – this is highlighted between the warp 
types in the 8°condition (Figure 13). In Path Study, both warp type 
and ofset magnitude were signifcant factors (Table 5). Within 
warp type, there were signifcant diferences between both MPC-P 

https://MPC-P0.05


A Model Predictive Control Approach for Reach Redirection in Virtual Reality 

Table 5: DSJ Main Efects 

Study Factor d fN um d fDen F p η2 
p Study Factor d fN um d fDen F p η2 

p 

Endpoint Warp 1 239 0.13 0.723 0.00 Endpoint Warp 1 241 1.31 0.254 0.01 
Endpoint Ofset 3 239 2.28 0.080 0.03 Endpoint Ofset 3 241 39.43 <.0001 0.33 
Endpoint W*O 3 239 3.44 0.018 0.04 Endpoint W*O 3 241 1.35 0.260 0.02 
Path Warp 2 364 7.19 <.0001 0.04 Path Warp 2 365 45.35 <.0001 0.20 
Path Ofset 3 364 7.23 <.0001 0.06 Path Ofset 3 365 118.77 <.0001 0.49 
Path W*O 6 364 0.88 0.510 0.01 Path W*O 6 365 3.22 0.004 0.05 

Figure 12: Root mean squared error (RMSE) between real 
and desired path. Means and 95% CI shown. 

Figure 13: Dimensionless squared jerk (DSJ) across ofset 
magnitude and warp type. Means and 95% CI shown. 

methods, with the jerkiest user hand movements occurring during 
MPC-P0.05 trials. 

7.5 Qualitative 
7.5.1 Per Trial Measures. After each reach, users were asked to 
rate how well their physical and virtual hands matched. 

For Endpoint Study, only ofset magnitude made a signifcant 
impact on the score (Table 6); larger magnitude yielded lower scores 
(Figure 14). In Path Study, both warp type and ofset magnitude 
were signifcant factors, as well as their interaction (Table 6). Figure 
14 highlights the relevant interactions – in which TPS performs 
better than both MPC-P methods at 0 and 0.2 curvatures, better than 
MPC-P0.05 at 0.4, and no diferent at 0.6. MPC-P0.1 also received 
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Table 6: Trial Hand Match Efects 

Figure 14: Self-reported hand match ratings per trial across 
ofset magnitude and warp type. Means and 95% CI shown. 

higher hand match scores compared to MPC-P0.05 in all conditions 
except 0.6. 

7.5.2 Per Block Measures. All trials of a given warp type were 
grouped into a single block, after which participants were asked to 
respond to three questions outlined in Section 6.4. 

Q1 considered how well the virtual hand movement matched 
overall. In Endpoint Study, the diferences in scoring between HR 
and MPC-E were not signifcant; however, in Path Study, warping 
type was signifcant (Table 7). There were marginally signifcant 
diferences between MPC-P0.05 and MPC-P0.01 (Figure 15). MPC-
P0.01 performed similarly to TPS, with MPC-P0.05 receiving the 
lowest scores. 

Q2 asked participants to rate how tolerable any mismatch was 
to their experience. There was no signifcant diference between 
warping types in Endpoint Study. But, in Path Study there was a 
signifcant diference (Table 7), specifcally between MPC-P0.05 and 
TPS with TPS receiving higher ratings of tolerability. 

Q3 examined the self-reported ease with which participants 
could complete the block. In Endpoint Study, there was a signifcant 
diference in warping type (Table 7), where HR was rated as easier 
for task completion compared to MPC-E. In Path Study, however, 
there were no signifcant diferences between the three warping 
methods (Table 7). 

7.6 Visualizing Applied Warping 
To provide an intuition about the warping generated by each method, 
we illustrate the average magnitude of applied warping (i.e. | |w| |) as 
a function of progress along the reach. Figure 16 shows this across 
various ofset magnitudes. We see strong similarity in the warpings 

https://MPC-P0.05
https://MPC-P0.05
https://MPC-P0.01
https://MPC-P0.05
https://MPC-P0.05
https://MPC-P0.05
https://MPC-P0.05
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Table 7: Block Questions Main Efects 

Q Study Factor d fNum d fDen F p ηp 
2 

1 Endpoint Warp 1 7 0.13 0.732 0.02 
1 Path Warp 2 14 4.83 0.025 0.39 
2 Endpoint Warp 1 7 0.00 1.000 0.00 
2 Path Warp 2 14 5.65 0.016 0.43 
3 Endpoint Warp 1 7 7.00 0.033 0.44 
3 Path Warp 2 14 2.24 0.144 0.22 

Figure 15: Self-reported subjective ratings per block. Means 
and 95% CI shown. 

Figure 16: Mean redirection magnitude vs. proportion of 
reach completed, grouped by ofset magnitude and averaged 
across all participants. 

applied by MPC-E and HR, supporting the lack of many signifcant 
diferences found between the two in our results. In Path Study, the 
efect of MPC is much clearer. In both MPC-P cases, we see that 
less warp tends to be applied at the onset of reach compared to TPS, 
due to the cost of rapidly shifting the virtual hand. Compared to 
MPC-P0.1, the lower penalty of MPC-P0.05 yields warping that is 
applied more rapidly but with less stability. 

Additionally, Figure 17 shows an overhead view of the average 
reach trajectory performed by each participant within the Path 
Study conditions. This highlights the strong between-user variabil-
ity in the performance of any given warp (even with fxed warps 
such as TPS), further motivating the ability to fne-tune a warping 
method. 
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Figure 17: Mean reach trajectories for each participant (col.) 
and curve ofset (row) in Path Study, in horizontal (xz) plane. 

8 DISCUSSION AND LIMITATIONS 
Our evaluation suggests that for endpoint-based redirection, MPC-
E broadly matched the performance of Haptic Retargeting (HR) in 
terms of endpoint error, trajectory smoothness, and users’ quali-
tative ratings. This is supported by the similarity and consistency 
of warping generated by the two techniques (Figure 17). We note 
that for 16°ofsets, redirection was signifcantly more noticeable 
(lower Hand Match rating) than for 0°-12°ofsets, and resulted in 
signifcantly larger endpoint error (Figure 10). 

For path-based redirection, Thin Plate Spine warping (TPS) tended 
to perform signifcantly better than MPC-P0.05 by the same mea-
sures, as well as in terms of path RMSE. In contrast, no signifcant 
diferences were found between TPS and MPC-P0.1 in terms of 
smoothness, RMSE, or endpoint error. However, TPS yielded signif-
icantly less noticeable warping than both MPC-P cases, particularly 
at lower curvatures. This important fnding suggests that MPC-P 
as implemented may produce noticeable warping even when the 
desired redirection ofset is small; TPS does not sufer from this 
issue since the warp is statically determined by the desired path. 
Per block, however, no signifcant diferences were found between 
TPS and MPC-P0.1; this suggests that overall, user’s subjective 
experience may be comparable among these warp types. 

While MPC-P0.1 tended to outperform MPC-P0.05 in most met-
rics, MPC-P0.05 yielded lower endpoint error and RMSE for larger 
curvature ofsets at the expense of increased reach time and lower 
self-reported measures. This suggests that there is a trade-of be-
tween the amount of warp applied and the user’s comfort and 
cognitive load, which prior redirected reaching studies have found 
[32]. However, the MPC-P0.05 controller may also have sufered 
from instabilities for large curvature ofsets. 

On the whole, we see a number of trade-ofs between the more 
traditional redirection techniques and MPC approaches. As dis-
cussed, there are performance diferences, though less so for endpoint-
based redirection and for lower amounts of warping. MPC ap-
proaches have a higher computational cost, but are more generaliz-
able and can be modifed for diferent redirection tasks. Additionally, 
the MPC approach is solved continuously, which means that the 
goals can be easily updated in real-time; reach targets, cost weights, 
and other parameters can be updated from one timestep to the next. 

https://MPC-P0.05
https://MPC-P0.05
https://MPC-P0.05
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This may make it easier to support real-world reaching tasks, where 
users can change their target goal on the fy. Beyond target changes, 
other costs can be added - for example to prevent the user from en-
tering into a region or helping them by avoiding a moving obstacle. 
Perhaps most interestingly, we see the costs and constraints of MPC 
as a natural way to incorporate the fndings from psychophysical 
studies of redirection (e.g. detection thresholds) directly into the 
generation of the warping itself. Future work should explore other 
such applications to better understand how an MPC approach could 
beneft user reach in VR. 

While this work presents an important step towards more gen-
eralizable redirection techniques, there are several important limi-
tations to consider: 

8.0.1 Study Limitations. In order to maintain a practical study 
length, we evaluated a limited range of ofsets and redirection 
confgurations. Assessing the impact of vertical gain redirection 
[52], diferent virtual target locations, and combining angular and 
curvature ofsets would give a broader picture of the capabilities 
of our MPC approach. Furthermore, the given study task was to 
reach the target as accurately as possible, with no instructions given 
about reach timing. Given the known speed-accuracy trade-of in 
human movement [15], this likely resulted in reduced movement 
speeds which may not have been captured by the present model. 
Because this was not tested against alternative instruction (e.g., 
reach the target as quickly as possible), further work is needed to 
explore which interaction condition MPC performs best in. 

Path Study aimed to guide the user’s hand along a path dur-
ing reach, but their task goal remained simply to reach the end 
target accurately. Our results (Figure 17) suggest strong variation 
in the efectiveness of path-based redirection across participants. 
This may be because curvature ofsets did not directly impact task-
relevant error [50], as evidenced by Figure 10 where no signifcant 
diferences in target endpoint error occur between curvatures of 
0, 0.2, or 0.4 across all warp types. An interaction task where the 
user is instructed to follow a virtual path with their hand would 
likely result in the physical hand following the desired path more 
closely, since curvature ofsets would have a stronger impact on 
the user’s task goal. This interaction is less common than reaching 
for an object, however, and furthermore is not captured by the 
point-to-point goal directed movement models considered here. 

Furthermore, our interpretation of Path Study is limited by the 
fact that curvature ofset and path-based redirection have not been 
greatly explored to date, so less is known about their relevant 
perceptual thresholds. Additionally, our redirected reach model 
was only validated on linear reach due to the available dataset. 
Future work should better explore path redirection and validate the 
redirected reach model for this type of redirection task. 

8.0.2 Model Limitations. The simplicity of the sensorimotor redi-
rection model used also presents important limitations. While the 
Minimum Jerk model provides a convenient closed-form feedback 
law, it does not account for variation between users, motor and sen-
sory noise, or the potential for diferent task-based reward functions. 
More comprehensive approaches such as stochastic [47] or intermit-
tent [6, 9] optimal control present a more complete representation 
of the sensorimotor process and could perhaps be integrated within 
future MPC-based redirection iterations. However, it is not yet 

clear whether such complex optimization-based reach models can 
be efciently integrated within a larger MPC framework. 

Additionally, the present model considers only visual feedback 
while in reality the sensory system integrates multiple cues (e.g., 
proprioception) to estimate the position and movement of the hand 
in space [46]. Furthermore, recent work has highlighted the inte-
gration of hand velocity and orientation when estimating contact 
with a target in VR [10]. By expanding our model to handle multi-
sensory integration through a Kalman flter [8] or maximum like-
lihood estimation [12], we may better capture the user’s internal 
state estimates and thus improve model accuracy and MPC per-
formance. Another limitation is the requirement of a reach time 
estimate. While estimation errors are partially mitigated as the 
controller recomputes the time estimate in each timestep, overall, 
it creates issues with inconsistent reaches. Rather than the simpli-
fed constant speed assumption used presently to roughly estimate 
remaining reach time, other methods based on the task itself (such 
as Fitts’s Law[15]) may provide more accurate estimates without 
introducing too much complexity. Other reach models such as the 
Minimum Jerk-Minimum Time model [24] or Minimum Variance 
model [23] do not require the explicit assumption of reach time, 
but are comparatively more complex and require a diferent set of 
biological assumptions. 

8.0.3 MPC Limitations. Overall, our MPC approach yielded com-
parable performance to HR in the endpoint condition and slightly 
lower performance than TPS in the path condition, particularly in 
terms of noticeability. The main source of this diference lies in the 
inherent variability of the warping produced by MPC. In HR and 
TPS, warping is determined entirely by the hand’s position in space. 
With MPC, the optimization process balances redirection goals (e.g. 
desired spatial ofsets) and warping costs, so the applied warping 
depends on previous states in addition to the current hand position. 
The smoothness of the warping applied (i.e., its rate of change over 
time/space) is then dependent on the costs and parameters selected, 
whereas the smoothness of traditional techniques is determined en-
tirely by the distance between fxed physical and virtual landmarks. 
The selection of appropriate cost function parameters is critical 
for proper performance of an MPC approach, and the increased 
noticeability of MPC-P suggests additional parameter tuning may 
be needed to improve performance. 

While this inherent variability may make MPC more challenging 
initially (as evidenced by our Path Study results), in theory it also 
enables continuous real-time adaptability of warping in response 
to shifting interaction goals (e.g. updating confdence in the user’s 
target or avoiding dynamic physical obstacles). In contrast, the fxed 
spatial interpolation methods of traditional redirection techniques 
do not have a direct method of adapting to the user and their 
environment, meaning they must be updated ad hoc [7]. 

The computational cost of our present MPC approach also limits 
the time horizon on which we can evaluate potential future steps; it 
is possible that planning further ahead may improve performance. 
Thus, while the specifc implementation of our MPC controllers are 
not perfect, we are optimistic about the potential benefts of this 
MPC approach from a high level - improved models and optimiza-
tion costs could easily be ft into this overall framework. 
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9 CONCLUSION 
In this paper, we introduced a Model Predictive Control approach 
for reach redirection in VR. We frst adapted a Minimum Jerk reach 
model to capture redirection by incorporating an appropriate sen-
sory bias in the user’s estimate of their hand state. Our simulations 
show that this model predicts the trajectory of redirected reaches 
with similar errors compared to non-ofset reaching, though er-
rors increase with greater redirection, especially beyond known 
perceptual thresholds. We then applied this model as part of a 
Model Predictive Control framework for generating online redi-
rected reaching. We described the formulation of two diferent 
cost functions for two reach redirection goals, endpoint-based and 
path-based redirection. Our evaluation results show that our MPC 
approach preforms well compared to traditional redirection meth-
ods for endpoint-based redirection, though it performs worse in 
path-based redirection tasks. We believe the MPC approach can 
have benefts beyond the demonstrated goals, especially in sce-
narios where reaches need to be adapted on the fy. Future work 
should explore other models and cost functions towards improved 
performance. However, these initial results suggest that control 
theoretic approaches to modeling and controlling reach redirection 
have promise. 
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